can be strongly embedded into category of semigroups
In this paper we introduce the concept of an -representation of an algebra which is a common generalization of subdirect, full subdirect and weak direct representation of . Here we characterize such representations in terms of congruence relations.
Let be a type of algebras. A valuation of terms of type is a function assigning to each term of type a value . For , an identity of type is said to be -normal (with respect to valuation ) if either or both and have value . Taking with respect to the usual depth valuation of terms gives the well-known property of normality of identities. A variety is called -normal (with respect to the valuation ) if all its identities are -normal. For any variety , there is a least...
We prove here an Eilenberg type theorem: the so-called conjunctive varieties of rational languages correspond to the pseudovarieties of finite semilattice-ordered monoids. Taking complements of members of a conjunctive variety of languages we get a so-called disjunctive variety. We present here a non-trivial example of such a variety together with an equational characterization of the corresponding pseudovariety.