A continuous geometry as a mathematical model for quantum mechanics

Christopher J. Duckenfield

Commentationes Mathematicae Universitatis Carolinae (1969)

  • Volume: 010, Issue: 2, page 217-236
  • ISSN: 0010-2628

How to cite

top

Duckenfield, Christopher J.. "A continuous geometry as a mathematical model for quantum mechanics." Commentationes Mathematicae Universitatis Carolinae 010.2 (1969): 217-236. <http://eudml.org/doc/16322>.

@article{Duckenfield1969,
author = {Duckenfield, Christopher J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {2},
pages = {217-236},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A continuous geometry as a mathematical model for quantum mechanics},
url = {http://eudml.org/doc/16322},
volume = {010},
year = {1969},
}

TY - JOUR
AU - Duckenfield, Christopher J.
TI - A continuous geometry as a mathematical model for quantum mechanics
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1969
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 010
IS - 2
SP - 217
EP - 236
LA - eng
UR - http://eudml.org/doc/16322
ER -

References

top
  1. G. MACKEY, Mathematical Foundations of Quantum Mechanics, Benjamin, 1961. (1961) 
  2. I. KAPLANSKY, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. Math., 1955, 61, 524-541. (1955) Zbl0065.01801MR0088476
  3. C. DUCKENFIELD, Eigenvalues in continuous rings, submitted to Acta sci. math. 
  4. J. von NEUMANN, Continuous geometry, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 92-100. (1936) Zbl0014.22307
  5. J. von NEUMANN, Examples of continuous geometries, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 101-108. (1936) Zbl0014.22308
  6. J. von NEUMANN, On regular rings, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 707-713. (1936) Zbl0015.38802
  7. J. von NEUMANN, Algebraic theories of continuous geometries, Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 16-22. (1937) 
  8. J. von NEUMANN, Continuous rings and their arithmetics, Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 341-349. (1937) Zbl0017.14804
  9. J. von NEUMANN, Continuous Geometry, Princeton 1960. (1960) Zbl0171.28003MR0120174
  10. L. SKORNYAKOV, Complemented Modular Lattices and Regular Rings, Oliver and Boyd, 1964. (1964) Zbl0156.04101MR0169799
  11. P. HALMOS, Measure Theory, Van Nostrand, 1962. (1962) MR0033869
  12. F. MAEDA, Kontinuierliche Geometrien, Sp. - Verlag, 1958. (1958) MR0090579

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.