A continuous geometry as a mathematical model for quantum mechanics
Commentationes Mathematicae Universitatis Carolinae (1969)
- Volume: 010, Issue: 2, page 217-236
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- G. MACKEY, Mathematical Foundations of Quantum Mechanics, Benjamin, 1961. (1961)
- I. KAPLANSKY, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. Math., 1955, 61, 524-541. (1955) Zbl0065.01801MR0088476
- C. DUCKENFIELD, Eigenvalues in continuous rings, submitted to Acta sci. math.
- J. von NEUMANN, Continuous geometry, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 92-100. (1936) Zbl0014.22307
- J. von NEUMANN, Examples of continuous geometries, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 101-108. (1936) Zbl0014.22308
- J. von NEUMANN, On regular rings, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 707-713. (1936) Zbl0015.38802
- J. von NEUMANN, Algebraic theories of continuous geometries, Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 16-22. (1937)
- J. von NEUMANN, Continuous rings and their arithmetics, Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 341-349. (1937) Zbl0017.14804
- J. von NEUMANN, Continuous Geometry, Princeton 1960. (1960) Zbl0171.28003MR0120174
- L. SKORNYAKOV, Complemented Modular Lattices and Regular Rings, Oliver and Boyd, 1964. (1964) Zbl0156.04101MR0169799
- P. HALMOS, Measure Theory, Van Nostrand, 1962. (1962) MR0033869
- F. MAEDA, Kontinuierliche Geometrien, Sp. - Verlag, 1958. (1958) MR0090579