A characterization of the eigenvalues of a completely continuous selfadjoint operator

Joachim Naumann

Commentationes Mathematicae Universitatis Carolinae (1972)

  • Volume: 013, Issue: 1, page 63-78
  • ISSN: 0010-2628

How to cite

top

Naumann, Joachim. "A characterization of the eigenvalues of a completely continuous selfadjoint operator." Commentationes Mathematicae Universitatis Carolinae 013.1 (1972): 63-78. <http://eudml.org/doc/16475>.

@article{Naumann1972,
author = {Naumann, Joachim},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {1},
pages = {63-78},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A characterization of the eigenvalues of a completely continuous selfadjoint operator},
url = {http://eudml.org/doc/16475},
volume = {013},
year = {1972},
}

TY - JOUR
AU - Naumann, Joachim
TI - A characterization of the eigenvalues of a completely continuous selfadjoint operator
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1972
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 013
IS - 1
SP - 63
EP - 78
LA - eng
UR - http://eudml.org/doc/16475
ER -

References

top
  1. ACHIESER N. I., GLASMANN I. M., Theorie der linearen Operatoren in Hilbert-Raum, Akademie - Verlag Berlin, 1968. (1968) 
  2. BERGER M. S., On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate, Comm. Pure Appl. Math. 20 (1967), 687-719. (1967) Zbl0162.56405MR0221808
  3. BROWDER F. E., Variational methods for nonlinear elliptic eigenvalue problems, Bull. Amer. Math. Soc. 71 (1965), 176-183. (1965) Zbl0135.15802MR0179459
  4. KRASNOSELSKIJ M. A., Topological methods in the theory of nonlinear integral equations, (in Russian), Moscow, GITTL, 1956. (1956) 
  5. LAX P. D., A procedure for obtaining upper bounds for the eigenvalues of a Hermitian symmetric operator, Studies in Math. Analysis, Polya Issue, Stanford Univ. Press. Stanford 1962, 199-201. (1962) Zbl0118.11002MR0149294
  6. LJUSTERNIK L. A., SOBOLEV W. I., Elemente deг Funktionalanalysis, Akademie - Verlag Berlin, 1968. (1968) 
  7. NAUMANN J., Existenzsätze für nichtlineare Eigenwertprobleme, (to appear). Zbl0256.49048MR0328710
  8. STENGER W., On the variational principles for eigenvalues for a class of unbounded operators, J. Math. Mech. 17 (1968), 641-648. (1968) Zbl0157.21302MR0227800
  9. VAJNBERG M. M., Variational methods for the investigation of nonlinear operators, (in Russian), Moscow, GITTL, 1956. (1956) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.