A characterization of the eigenvalues of a completely continuous selfadjoint operator
The asymptotic limit of a bicontraction T (that is, a pair of commuting contractions) on a Hilbert space is used to describe a Nagy-Foiaş-Langer type decomposition of T. This decomposition is refined in the case when the asymptotic limit of T is an orthogonal projection. The case of a bicontraction T consisting of hyponormal (even quasinormal) contractions is also considered, where we have .
Let be a continuous function on and , , the convex set of selfadjoint operators with spectra in . If and , as an operator function, is Gateaux differentiable on while is Lebesgue integrable, then we have the inequalities where is the Gateaux derivative of .
A new proof of the monotonicity of the Temple quotients for the computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space is given. Another goal of the paper is a precise analysis of the length of the interval for admissible shifts for the Temple quotients.