Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type

Jindřich Nečas

Commentationes Mathematicae Universitatis Carolinae (1972)

  • Volume: 013, Issue: 1, page 109-120
  • ISSN: 0010-2628

How to cite

top

Nečas, Jindřich. "Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type." Commentationes Mathematicae Universitatis Carolinae 013.1 (1972): 109-120. <http://eudml.org/doc/16478>.

@article{Nečas1972,
author = {Nečas, Jindřich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {1},
pages = {109-120},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type},
url = {http://eudml.org/doc/16478},
volume = {013},
year = {1972},
}

TY - JOUR
AU - Nečas, Jindřich
TI - Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1972
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 013
IS - 1
SP - 109
EP - 120
LA - eng
UR - http://eudml.org/doc/16478
ER -

References

top
  1. F. E. BROWDER, Existence and uniqueness theorems for solutions of non-linear boundary value problems, Proc. Symposia on Appl. Math. Amer. Math. Soc. 17 (1965), 24-49. (1965) MR0197933
  2. F. E. BROWDER, Existence theorems for non-linear partial differential equations, Proc. Amer. Math. Soc. 1968. Summer Institute in Global Analysis (to appear). (1968) 
  3. F. E. BROWDER, Non-linear operators and non-linear equations of evolution in Banach spaces, Proceedings of the Symposium on Non-linear Functional Analysis, Amer. Math. Soc. April, 1968 in Chicago. To appear. (1968) 
  4. D. G. de FIGUEIREDO, Ch. P. GUPTA, Borsuk type theorems for non-linear non-compact mappings in Banach Space, to appear. 
  5. S. FUČÍK, Note on the Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 12 (1971), 213-226. (1971) MR0288641
  6. M. A. KRASNOSELSKIJ, Topological methods in the theory of non-linear integral equations, Pergamon Press, N. T. 1964. (1964) 
  7. M. KUČERA, Fredholm alternative for non-linear operators, thesis 1969, Charles University, Prague. (1969) 
  8. M. KUČERA, Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 11 (1970), 337-363. (1970) MR0267429
  9. J. NEČAS, Sur l'alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites, Annali Scuola Norm. Sup. Pisa, XXIII (1969), 331-345. (1969) Zbl0187.08103MR0267430
  10. S. I. POCHOŽAJEV, On the solvability of non-linear equations involving odd operators, Functional Analysis and Appl. (Russian), 1 (1967), 66-73. (1967) 
  11. M. M. VAJNBERG, Variational methods for the study of non-linear operators, Holden-Day, 1964. (1964) 

Citations in EuDML Documents

top
  1. Jindřich Nečas, On the range of nonlinear operators with linear asymptotes which are not invertible
  2. Filomena Pacella, Note on spectral theory of nonlinear operators: Extensions of some surjectivity theorems of Fučík and Nečas
  3. Jiří Jarušek, Jindřich Nečas, Sur les domaines des valeurs des opérateurs non-linéaires
  4. Svatopluk Fučík, Спектральный анализ нелинейных операторов
  5. Ivan Hlaváček, Oldřich John, Alois Kufner, Josef Málek, Nečasová, Š. , Jana Stará, Vladimír Šverák, In Memoriam Jindřich Nečas

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.