Note on the Fredholm alternative for nonlinear operators

Svatopluk Fučík

Commentationes Mathematicae Universitatis Carolinae (1971)

  • Volume: 012, Issue: 2, page 213-226
  • ISSN: 0010-2628

How to cite

top

Fučík, Svatopluk. "Note on the Fredholm alternative for nonlinear operators." Commentationes Mathematicae Universitatis Carolinae 012.2 (1971): 213-226. <http://eudml.org/doc/16423>.

@article{Fučík1971,
author = {Fučík, Svatopluk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {2},
pages = {213-226},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Note on the Fredholm alternative for nonlinear operators},
url = {http://eudml.org/doc/16423},
volume = {012},
year = {1971},
}

TY - JOUR
AU - Fučík, Svatopluk
TI - Note on the Fredholm alternative for nonlinear operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1971
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 012
IS - 2
SP - 213
EP - 226
LA - eng
UR - http://eudml.org/doc/16423
ER -

References

top
  1. S. FUČÍK, Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations, Comment. Math. Univ. Carolinae 11 (1970), 271-284 (preliminary communication). (1970) MR0266000
  2. [unknown], Same as 1 (to appear in Čas. Pěst. Mat). 
  3. R. I. KAČUROVSKIJ, Regular points, spectrum and eigenfunctions of nonlinear operators, (Russian), Dokl. Akad. Nauk SSSR 188 (1969), 274-277. (1969) MR0251599
  4. M. A. KRASNOSELSKIJ, Topological methods in the theory of non-linear integral equations, Pergamon Press, N.Y. 1964. (1964) 
  5. M. KUČERA, Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 11 (1970), 337-363. (1970) MR0267429
  6. J. NEČAS, Sur l'alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites, Annali Scuola Norm. Sup. Pisa, XXII (1969), 331-345. (1969) Zbl0187.08103MR0267430
  7. J. NEČAS, Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type, (to appear). MR0305171
  8. W. V. PETRYSHYN, Nonlinear equations involving noncompact operators, Proceedings of Symposia in Pure Math., Vol. XVIII, Part 1, 206-233, Providence, R.I., 1970. (1970) Zbl0232.47070MR0271789
  9. S. I. POCHOŽAJEV, On the solvability of non-linear equations involving odd operators, Funct. Anal. and Appl. (Russian), 1 (1967), 66-73. (1967) 
  10. M. M. VAJNBERG, Variational methods for the study of non-linear operators, Holden-Day, 1964. (1964) 

Citations in EuDML Documents

top
  1. Filomena Pacella, Note on spectral theory of nonlinear operators: Extensions of some surjectivity theorems of Fučík and Nečas
  2. Svatopluk Fučík, Dien Hien Tran, Note on nonlinear spectral theory: Application to boundary value problems for ordinary integrodifferential equations
  3. Jindřich Nečas, Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type
  4. Petronije S. Milojević, Fredholm alternatives and surjectivity results for multivalued A -proper and condensing mappings with applications to nonlinear integral and differential equations
  5. S. Fučik, J. Nečas, J. Souček, V. Souček, Upper bound for the number of eigenvalues for nonlinear operators
  6. Svatopluk Fučík, Nonlinear equations with noninvertible linear part
  7. Pavel Drábek, Remarks on nonlinear noncoercive problems with jumping nonlinearities
  8. Svatopluk Fučík, Спектральный анализ нелинейных операторов

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.