Dual properties for unconditionally converging operators

Joe Howard

Commentationes Mathematicae Universitatis Carolinae (1974)

  • Volume: 015, Issue: 2, page 273-281
  • ISSN: 0010-2628

How to cite

top

Howard, Joe. "Dual properties for unconditionally converging operators." Commentationes Mathematicae Universitatis Carolinae 015.2 (1974): 273-281. <http://eudml.org/doc/16619>.

@article{Howard1974,
author = {Howard, Joe},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {2},
pages = {273-281},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Dual properties for unconditionally converging operators},
url = {http://eudml.org/doc/16619},
volume = {015},
year = {1974},
}

TY - JOUR
AU - Howard, Joe
TI - Dual properties for unconditionally converging operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1974
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 015
IS - 2
SP - 273
EP - 281
LA - eng
UR - http://eudml.org/doc/16619
ER -

References

top
  1. C. BESSAGA A. PELCZYNSKI, On bases and unconditional convergence of series in Banach spaces, Studia Math. 18 (1958), 151-164. (1958) MR0115069
  2. N. DUNFORD J. T. SCHWARTZ, Linear Operators, Part I, Interscience Publishers, Inc., New York, 1958. (1958) MR0117523
  3. J. HOWARD, The comparison of an unconditionally converging operator, Studia Math. 23 (1969), 295-298. (1969) Zbl0189.43504MR0247520
  4. J. HOWARD, F -singular and G -cosingular operators, Colloquium Math. 22 (1970), 85-89. (1970) MR0275194
  5. R. C. JAMES, Separable conjugate spaces, Pacific J. Math. 10 (I960), 563-571. Zbl0096.31301MR0117528
  6. Ch. W. McARTHUR, A note on subseries convergence, Proc. Amer. Math. Soc. 12 (1961), 540-545. (1961) Zbl0099.27702MR0126147
  7. A. PELCZYNSKI, Banach spaces in which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648. (1962) MR0149295
  8. A. PELCZYNSKI, On strictly singular and strictly cosingular operators, I, Bull. Acad. Polon. Sci. 13 (1965), 31-36. (1965) Zbl0138.38604MR0177300
  9. A. PELCZYNSKI, On strictly singular and strictly cosingular operators, II, Bull. Acad. Polon. Sci. 13 (1965), 37-41. (1965) MR0177301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.