Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type

Georg Hetzer

Commentationes Mathematicae Universitatis Carolinae (1975)

  • Volume: 016, Issue: 1, page 121-138
  • ISSN: 0010-2628

How to cite

top

Hetzer, Georg. "Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type." Commentationes Mathematicae Universitatis Carolinae 016.1 (1975): 121-138. <http://eudml.org/doc/16674>.

@article{Hetzer1975,
author = {Hetzer, Georg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {1},
pages = {121-138},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type},
url = {http://eudml.org/doc/16674},
volume = {016},
year = {1975},
}

TY - JOUR
AU - Hetzer, Georg
TI - Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1975
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 016
IS - 1
SP - 121
EP - 138
LA - eng
UR - http://eudml.org/doc/16674
ER -

References

top
  1. A. L. BADOEV B. N. SADOVSKI, An example of a densifying operator in the theory of differential equations with a deviating argument of neutral type, Soviet Math. Dokl. 10 (1969), 724-728. (1969) MR0247222
  2. M. A. CRUZ J. K. HALE, Existence, uniqueness and continuous dependence for hereditary systems, Annali di Mathematica, Ser. 3, 85 (1970), 63-81. (1970) MR0262633
  3. S. FUČÍK, Further remarks on a theorem by E. M. Landesman and A. C. Lazer, Comment. Math. Univ. Carolinae 15 (1974), 259-271. (1974) MR0348260
  4. S. FUČÍK M. KUČERA J. NEČAS, Ranges of nonlinear asymptotically linear operators, (to appear in J. Differential Equations). MR0372696
  5. J. K. HALE J. MAWHIN, Coincidence degree and periodic solutions of neutral equations, J. Differential Equations 15 (1974), 295-307. (1974) MR0336004
  6. G. HETZER, Some remarks on φ -operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations, (to appear). Zbl0316.47041MR0385653
  7. E. M. LANDESMAN A. C. LAZER, Nonlinear perturbations of linear boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. (1970) MR0267269
  8. J. MAWHIN, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) Zbl0244.47049MR0328703
  9. J. MAWHIN, The solvability of some operator equations with a quasibound nonlinearity in normed spaces, J. Math. Anal. Appl. 45 (1974), 455-467. (1974) MR0333865
  10. J. MAWHIN, Nonlinear perturbations of Gredholm mappings in normed spaces and applications to differential equations, Trabalho de Matematica Nr. 61, Univ. of Brasília 1974. (1974) MR0369823
  11. J. NEČAS, On the range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Carolinae 14 (1974), 63-72. (1974) MR0318995
  12. R. D. NUSSBAUM, A generalization of the Ascoli theorem and an application to functional differential equations, J. Math. Anal. Appl. 35 (1971), 600-610. (1971) Zbl0215.19501MR0289898
  13. R. D. NUSSBAUM, Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972), 741-766. (1972) Zbl0232.47062MR0306986
  14. R. D. NUSSBAUM, Existence and uniqueness theorems for some functional differential equations of neutral type, J. Differential Equations 11 (1972), 607-623. (1972) Zbl0263.34070MR0294825
  15. B. N. SADOVSKI, Applications to topological methods in the theory of periodic solutions of nonlinear differential operator equations of neutral type, Soviet Math. Dokl. 12 (1971), 1543-1547. (1971) 
  16. B. N. SADOVSKI, Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. (1972) MR0428132
  17. S. A. WILLIAMS, A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem, J. Differential Equations 8 (1970), 580-586. (1970) MR0267267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.