On the existence of solution of the equation L ( x ) = N ( x ) and a generalized coincidence degree theory. I.

Enayet U, Tarafdar

Commentationes Mathematicae Universitatis Carolinae (1980)

  • Volume: 021, Issue: 4, page 805-823
  • ISSN: 0010-2628

How to cite

top

Tarafdar, Enayet U,. "On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.." Commentationes Mathematicae Universitatis Carolinae 021.4 (1980): 805-823. <http://eudml.org/doc/17081>.

@article{Tarafdar1980,
author = {Tarafdar, Enayet U,},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {coincidence degree; Leray-Schauder degree; admissible generalized Fredholm mapping},
language = {eng},
number = {4},
pages = {805-823},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.},
url = {http://eudml.org/doc/17081},
volume = {021},
year = {1980},
}

TY - JOUR
AU - Tarafdar, Enayet U,
TI - On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1980
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 021
IS - 4
SP - 805
EP - 823
LA - eng
KW - coincidence degree; Leray-Schauder degree; admissible generalized Fredholm mapping
UR - http://eudml.org/doc/17081
ER -

References

top
  1. CARADUS S. R., Perturbation theory for generalized Fredholm operators, Pacific J. Math. 52 (1974), 11-15. (1974) Zbl0267.47010MR0353034
  2. CARADUS S. R., Perturbation theory for generalized Fred-holm operators, II, Transactions Amer. Math. Soc. 62 (1977), 72-76. (1977) MR0435896
  3. DOLPH C. L., MINTY G. J., On nonlinear integral equations of the Hammerstein type, "Integral Equations", Madison Univ. Press, lilladison, 111 (1964), 99-154. (1964) Zbl0123.29603MR0161113
  4. EHRMANN H., Existenzsätze für die Lösungen gewisser nicht-linear Rand-wertaufgaben, Z. Angew. Math. Mech. 45 (1965), 22-29; Abh. Deutsch. Akad. tfiss. Berlin Kl. (1965) MR0205123
  5. GAINES R. E., MAWHIN J. L., Coincidence degree and non-linear differential Equations, Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.), Springer-Verlag (1977). (1977) MR0637067
  6. HETZER G., Some remarks on φ + operators and on the co-incidence degree for Fredholm equation with non-compact nonlinear perturbation, Ann. Soc. Sci. Bruxells Ser. I 89 (1975), 497-508. (1975) MR0385653
  7. HETZER G., Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type, Comment. Math. Univ. Carolinae 16 (1975), 121-138. (1975) Zbl0298.47034MR0364814
  8. KELLET J. L., NAMIOKA I., Linear Topological Spaces, Graduate Texts in Mathematics, 36, Springer-Verlag (1964). (1964) 
  9. MAWHIN J., Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locality convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) MR0328703
  10. TARAFDAR E., On the existence of the solution of the equation L ( x ) = N ( x ) and a generalized coincidence degree theory II, Comment. Math. Univ. Carolinae 21 (1980). (1980) MR0597769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.