Applications of the induced morphism theorem in regular categories

Temple H. Fay

Commentationes Mathematicae Universitatis Carolinae (1975)

  • Volume: 016, Issue: 2, page 359-375
  • ISSN: 0010-2628

How to cite

top

Fay, Temple H.. "Applications of the induced morphism theorem in regular categories." Commentationes Mathematicae Universitatis Carolinae 016.2 (1975): 359-375. <http://eudml.org/doc/16693>.

@article{Fay1975,
author = {Fay, Temple H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {2},
pages = {359-375},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Applications of the induced morphism theorem in regular categories},
url = {http://eudml.org/doc/16693},
volume = {016},
year = {1975},
}

TY - JOUR
AU - Fay, Temple H.
TI - Applications of the induced morphism theorem in regular categories
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1975
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 016
IS - 2
SP - 359
EP - 375
LA - eng
UR - http://eudml.org/doc/16693
ER -

References

top
  1. J. ACZEL, A remark on functional dependence, J. Math. Psych. 2 (1965), 125-127. (1965) Zbl0142.11203MR0204902
  2. M. BARR, Exact categories, Springer - Verlag Lecture Notes in Mathematics, 236 (1971), 1-120. (1971) Zbl0223.18010
  3. A. R. BEDNAREK A. D. WALLACE, A relation-theoretic result with applications in topological algebra, Math. Systems Theory 1 (1963), 217-224. (1963) MR0221463
  4. N. BOURBAKI, Théorie des ensembles, Livre 1 (Hermann, Paris I960). Zbl1100.03002
  5. W. D. BURGESS X. CAICEDO, Relations and congruences in regular categories, Preprint. MR0674933
  6. A. H. CLIFFORD G. B. PRESTON, The algebraic theory of semigroups, Vol. 1, Amer. Math. Soc. Surveys 7 (1961). (1961) MR0132791
  7. J. M. DAY, Semigroup Acts, Algebraic and Topological, Second Florida Symposium on automata and semigroups, Univ. of Fla. (1971). (1971) 
  8. T. H. FAY, A natural transformation approach to additivity, Preprint. 
  9. T. H. FAY, A note on when a regular category is exact, Preprint. 
  10. P. A. GRILLET, Regular categories, Springer - Verlag Lecture Notes in Mathematics 236 (1971), 121-222. (1971) Zbl0251.18001MR0289599
  11. H. HERRLICH, Algebraic categories. An axiomatic approach, Preprint. 
  12. H. HERRLICH G. E. STRECKER, Category Theory, (Allyn and Bacon, Boston 1973). (1973) MR0349791
  13. A. KLEIN, Relations in categories, Illinois J. Math. 14 (1970), 536-550. (1970) Zbl0217.07001MR0268247
  14. J. LAMBEK, Goursat's Theorem and the Zassenhaus Lemma, Can. J. Math. 10 (1957), 45-56. (1957) MR0098138
  15. J. LAMBEK, Goursat's Theorem and homological algebra, Can. Math. Bull. 7 (19S4), 597-607. (19S4) MR0174612
  16. S. MacLANE, An algebra of additive relations, Proc. Mat. Acad. Sci. 47 (1961), 1043-1051. (1961) Zbl0123.01102MR0126477
  17. M. MARTIN, On the Induced Function Theorem, J. Undergrad. Math. 5 (1973), 5-8. (1973) 
  18. M. MARTIN, The Induced Function Theorem and some equivalent theorems, To appear J. Undergrad. Math. MR0492418
  19. J. MEISEN, Relations in Categories, Ph. D. Thesis, McGill Univ. (1972). (1972) MR2622453
  20. E. M. NORRIS, Some Structure Theorems for Topological Machines, Ph. D. Thesis, Univ. of Fla. (1969). (1969) 
  21. E. M. NORRIS, Relationally induced semigroups, To appear Pacific J. Math. Zbl0295.22004MR0327971
  22. E. M. NORRIS A. R. BEDHAREK, Inducing functions difunctionally, Preprint. 
  23. J. RIGUET, Relations binaires, fermetures, correspondances de Galois, Bull. Soc. Math. France 76 (1948), 114-155. (1948) Zbl0131.01202MR0028814
  24. J. RIGUET, Quelques propriétées des relations difonctionnelles, C. R. Acad. Sci. Paris 230 (1950), 1999-2000. (1950) MR0035743

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.