A categorical approach to integration.
Page 1 Next
Börger, Reinhard (2010)
Theory and Applications of Categories [electronic only]
Horst Herrlich (1971)
Manuscripta mathematica
C. Centazzo, J. Rosický, E. M. Vitale (2004)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Eduardo J. Dubuc, Ross Street (2006)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Thomas S. Shores (1975)
Mathematische Annalen
Jiří Adámek, Václav Koubek, Jiří Velebil (2000)
Commentationes Mathematicae Universitatis Carolinae
A duality between -ary varieties and -ary algebraic theories is proved as a direct generalization of the finitary case studied by the first author, F.W. Lawvere and J. Rosick’y. We also prove that for every uncountable cardinal , whenever -small products commute with -colimits in , then must be a -filtered category. We nevertheless introduce the concept of -sifted colimits so that morphisms between -ary varieties (defined to be -ary, regular right adjoints) are precisely the functors...
Centazzo, C., Vitale, E.M. (2002)
Theory and Applications of Categories [electronic only]
Jiří Vinárek (1977)
Commentationes Mathematicae Universitatis Carolinae
Luciano Stramaccia (1995)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Manh Quy Nguyen (1974)
Commentationes Mathematicae Universitatis Carolinae
Michael Höppner (1983)
Manuscripta mathematica
Walter Tholen, R. Börger (1976)
Manuscripta mathematica
Abramsky, Samson, Coecke, Bob (2005)
Theory and Applications of Categories [electronic only]
Stephen Lack, Paweł Sobociński (2005)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved, as well as quasiadhesive categories which restrict attention to regular monomorphisms. Many examples of graphical structures used in computer science are shown to be examples of adhesive and quasiadhesive categories. Double-pushout graph rewriting generalizes well to rewriting on arbitrary adhesive and quasiadhesive categories.
Stephen Lack, Paweł Sobociński (2010)
RAIRO - Theoretical Informatics and Applications
We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved, as well as quasiadhesive categories which restrict attention to regular monomorphisms. Many examples of graphical structures used in computer science are shown to be examples of adhesive and quasiadhesive categories. Double-pushout graph rewriting generalizes well to rewriting on arbitrary adhesive and quasiadhesive categories.
Walter Tholen (1975)
Mathematische Annalen
Wolfgang Rump (2001)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
René Guitart (2007)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Jan Reiterman (1971)
Commentationes Mathematicae Universitatis Carolinae
Temple H. Fay (1975)
Commentationes Mathematicae Universitatis Carolinae
Page 1 Next