On bicompacta which are unions of two subspaces of a certain type

Aleksander V. Arhangel'skii

Commentationes Mathematicae Universitatis Carolinae (1978)

  • Volume: 019, Issue: 3, page 525-540
  • ISSN: 0010-2628

How to cite

top

Arhangel'skii, Aleksander V.. "On bicompacta which are unions of two subspaces of a certain type." Commentationes Mathematicae Universitatis Carolinae 019.3 (1978): 525-540. <http://eudml.org/doc/16921>.

@article{Arhangelskii1978,
author = {Arhangel'skii, Aleksander V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bicompact space; sequential space; Moore space; Eberlein compact; sace of countable type; uniform base},
language = {eng},
number = {3},
pages = {525-540},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On bicompacta which are unions of two subspaces of a certain type},
url = {http://eudml.org/doc/16921},
volume = {019},
year = {1978},
}

TY - JOUR
AU - Arhangel'skii, Aleksander V.
TI - On bicompacta which are unions of two subspaces of a certain type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1978
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 019
IS - 3
SP - 525
EP - 540
LA - eng
KW - bicompact space; sequential space; Moore space; Eberlein compact; sace of countable type; uniform base
UR - http://eudml.org/doc/16921
ER -

References

top
  1. A. V. ARHANGEL'SKIĬ, Mappings and spaces, Russian Math. Surveys 21 (1966), 4, 115-162. (1966) MR0227950
  2. A. V. ARHANGEL'SKIĬ, Bicompact sets and the topology of spaces, Trans. Mosc. Math. Soc. 13 (1965), 1-62. (1965) MR0195046
  3. A. V. ARHANGEL'SKIĬ, On compact spaces which are unions of certain collections of subspaces of special type, Comment. Math. Univ. Carolinae 17 (1976), 737-753. (1976) MR0445453
  4. H. B. BEЛИЧКО, О nepистых npocтpaнствах и иx нenpepывных отображениях, Maтем. C6. 90 (132): 1 (1973), 34-47. (1973) 
  5. T. Д. ДИМОВ, О некоторых специальных бикомпактных разширениях периферически бикомпактных пространств, Докл. Boлr. Aкад. Hayк 30, 4 (1977), 483-486. (1977) Zbl1170.01341MR0644166
  6. R. ENGELKING, General Topology, PWN, Warazawa, 1977. (1977) Zbl0373.54002MR0500780
  7. I. JUHÁSZ, Cardinal functions in Topology, Math. Centre Tracts, 34, Amsterdam, 1971. (1971) MR0340021
  8. Я. A. KOФHEP, Об одном новом классе пространств и некоторых задачах из теории симметризуемости, ДAH CCCP 187, 2 (1969), 270-273. (1969) MR0248713
  9. E. MICHAEL M. E. RUDIN, Another note on Eberlein compacts, Pacific J. Math. 72, 2 (1977), 497-199. (1977) MR0478093
  10. C. Й. НЕДЕВ, σ -метризуемые пространства, Tpyды ММО 24 (1971), 201-230. (1971) Zbl0311.14006
  11. A. B. PAНЧИН, Теснота, секвенциальностъ и замкнутые покрытия, ДAH CCCP 232, 5 (1977), 1015-1018. (1977) 
  12. H. ROSENTHAL, The hereditary problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83-111. (1974) MR0417762
  13. M. HENRIKSEN J. R. ISBELL, Some properties of compactifications, Duke Math. Journ. 25 (1958), 83-106. (1958) MR0096196
  14. T. HOSHINA, Compactifications by adding a countable number of points, General Topology and its Relations to Modern Anal. and Algebra, IV, Academia, Prague, 1977. (1977) Zbl0387.54009MR0461446
  15. W. A. R. WEISS, Some applications of set theory to topology, Thesis, University of Toronto, Toronto, 1975. (1975) 
  16. A. B. APXAHГЕЛЬСКИЙ, Число Суслина и мощностъ. Характеры точек в секвенциальных бикомпактах, ДАН CCCP 192, 2 (1970), 255-258. (192,) 
  17. Ju. M. SMIRNOV, On the metrizability of bicompacta decomposable into the union of sets with countable bases, Fund. Math. 43 (1956), 387-393. (1956) MR0084127
  18. A. J. OSTASZEWSKI, On countably compact, perfectly normal spaces, J. London Math. Soc. (2), 14 (1976), 505-516. (1976) Zbl0348.54014MR0438292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.