The heredity problem for weakly compactly generated Banach spaces

Haskell P. Rosenthal

Compositio Mathematica (1974)

  • Volume: 28, Issue: 1, page 83-111
  • ISSN: 0010-437X

How to cite

top

Rosenthal, Haskell P.. "The heredity problem for weakly compactly generated Banach spaces." Compositio Mathematica 28.1 (1974): 83-111. <http://eudml.org/doc/89201>.

@article{Rosenthal1974,
author = {Rosenthal, Haskell P.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {83-111},
publisher = {Noordhoff International Publishing},
title = {The heredity problem for weakly compactly generated Banach spaces},
url = {http://eudml.org/doc/89201},
volume = {28},
year = {1974},
}

TY - JOUR
AU - Rosenthal, Haskell P.
TI - The heredity problem for weakly compactly generated Banach spaces
JO - Compositio Mathematica
PY - 1974
PB - Noordhoff International Publishing
VL - 28
IS - 1
SP - 83
EP - 111
LA - eng
UR - http://eudml.org/doc/89201
ER -

References

top
  1. [1] D. Amir and J. Lindenstrauss: The structure of weakly compact sets in Banach spaces. Ann. of Math.88 (1968) 35-46. Zbl0164.14903MR228983
  2. [2] H.H. Corson: The weak topology of a Banach space. Trans. Amer. Math. Soc., 101 (1961) 1-15. Zbl0104.08502MR132375
  3. [3] H.H. Corson and E. Michael: Metrizability of certain countable unions, Ill. J. Math.8 (1964) 351-360. Zbl0127.13203MR170324
  4. [4] W. Davis, T. Figiel, W. Johnson, and A. Pelozynski: Factoring weakly compact operators (to appear). Zbl0306.46020
  5. [5] N. Dunford and J.T. Schwartz: Linear Operators, Part I. New York, Interscience, 1958. Zbl0084.10402MR117523
  6. [6] D. Friedland: On closed subspaces of weakly compactly generated Banach spaces. Submitted to Israel J. Math. 
  7. [7] A. Grothendieck: Sur les applications linéaires faiblement compactes d'espaces du type C(K). Canad. J. Math., 5 (1953) 129-173. Zbl0050.10902MR58866
  8. [8] K. John and V. Zizler: Projections in dual weakly compactly generated Banach spaces (to appear) Studia Math. Zbl0247.46029MR336295
  9. [9] —: Smoothness and its equivalents in weakly compactly generated Banach spaces (to appear)J. Funct. Anal. Zbl0272.46012
  10. [10] M.I. Kadec and A. Pelczynski: Bases, lacunary sequences, and complemented subspaces in the spaces Lp. Studia Math.21 (1962) 161-176. Zbl0102.32202
  11. [11] J. Lindenstrauss: On a theorem of Murray and Mackey. Anais de Acad. Brasileira Cien.39 (1967) 1-6. Zbl0153.44201MR226366
  12. [12] —: Weakly compact sets - their topological properties and the Banach spaces they generate. Annals of Mathematics Studies69, Princeton Univ. Press (1972) 235-273. Zbl0232.46019
  13. [13] W. Johnson and J. Lindenstrauss: Some remarks on weakly compactly generated Banach spaces (to appear)Israel J. Math. Zbl0306.46021MR417760
  14. [14] H.P. Rosenthal: On injective Banach spaces and the spaces L∞(μ) for finite measures μ. Acta. Math.124 (1970) 205-248. Zbl0207.42803
  15. [15] —: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp(μ) to Lr(μ). J. Funct. Anal.2 (1969) 176-214. Zbl0185.20303
  16. [16] —: On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math.37 (1970) 13-36. Zbl0227.46027
  17. [17] —: On the subspaces of Lp(p &gt; 2) spanned by independent random variables. Israel J. Math.8 (1970) 273-303. Zbl0213.19303
  18. [18] —: On the span in Lp of sequences of independent random variables (II). Berkeley Symposium on Mathematics, Statistics, and Probability, Vol. II (1972) 149-167. Zbl0255.60003
  19. [19] W. Sierpinski: Cardinal and Ordinal Numbers. Warsaw, Monografje Matematijczne, 1958. Zbl0083.26803MR95787
  20. [20] S.L. Troyanski: Equivalent norms and minimal systems in non-separable Banach spaces. Studia Math.43 (1972) 125-138. Zbl0255.46012MR324382

Citations in EuDML Documents

top
  1. Boris A. Efimov, G. I. Chertanov, О подпространствах -приизведения отрезков
  2. M. Talagrand, Espaces de Banach faiblement -analytiques
  3. W. Schachermayer, Eberlein-compacts et espaces de Radon
  4. David Preiss, Petr Simon, A weakly pseudocompact subspace of Banach space is weakly compact
  5. Petr Simon, On continuous images of Eberlein compacts
  6. Genadij A. Sokolov, On some classes of compact spaces lying in -products
  7. Sophocles Mercourakis, E. Stamati, A new class of weakly -analytic Banach spaces
  8. István Juhász, Zoltán Szentmiklóssy, Andrzej Szymański, Eberlein spaces of finite metrizability number
  9. Aleksander V. Arhangel'skii, On bicompacta which are unions of two subspaces of a certain type
  10. Jiří Reif, Some remarks on subspaces of weakly compactly generated Banach spaces

NotesEmbed ?

top

You must be logged in to post comments.