The heredity problem for weakly compactly generated Banach spaces
Compositio Mathematica (1974)
- Volume: 28, Issue: 1, page 83-111
- ISSN: 0010-437X
Access Full Article
topHow to cite
topRosenthal, Haskell P.. "The heredity problem for weakly compactly generated Banach spaces." Compositio Mathematica 28.1 (1974): 83-111. <http://eudml.org/doc/89201>.
@article{Rosenthal1974,
author = {Rosenthal, Haskell P.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {83-111},
publisher = {Noordhoff International Publishing},
title = {The heredity problem for weakly compactly generated Banach spaces},
url = {http://eudml.org/doc/89201},
volume = {28},
year = {1974},
}
TY - JOUR
AU - Rosenthal, Haskell P.
TI - The heredity problem for weakly compactly generated Banach spaces
JO - Compositio Mathematica
PY - 1974
PB - Noordhoff International Publishing
VL - 28
IS - 1
SP - 83
EP - 111
LA - eng
UR - http://eudml.org/doc/89201
ER -
References
top- [1] D. Amir and J. Lindenstrauss: The structure of weakly compact sets in Banach spaces. Ann. of Math.88 (1968) 35-46. Zbl0164.14903MR228983
- [2] H.H. Corson: The weak topology of a Banach space. Trans. Amer. Math. Soc., 101 (1961) 1-15. Zbl0104.08502MR132375
- [3] H.H. Corson and E. Michael: Metrizability of certain countable unions, Ill. J. Math.8 (1964) 351-360. Zbl0127.13203MR170324
- [4] W. Davis, T. Figiel, W. Johnson, and A. Pelozynski: Factoring weakly compact operators (to appear). Zbl0306.46020
- [5] N. Dunford and J.T. Schwartz: Linear Operators, Part I. New York, Interscience, 1958. Zbl0084.10402MR117523
- [6] D. Friedland: On closed subspaces of weakly compactly generated Banach spaces. Submitted to Israel J. Math.
- [7] A. Grothendieck: Sur les applications linéaires faiblement compactes d'espaces du type C(K). Canad. J. Math., 5 (1953) 129-173. Zbl0050.10902MR58866
- [8] K. John and V. Zizler: Projections in dual weakly compactly generated Banach spaces (to appear) Studia Math. Zbl0247.46029MR336295
- [9] —: Smoothness and its equivalents in weakly compactly generated Banach spaces (to appear)J. Funct. Anal. Zbl0272.46012
- [10] M.I. Kadec and A. Pelczynski: Bases, lacunary sequences, and complemented subspaces in the spaces Lp. Studia Math.21 (1962) 161-176. Zbl0102.32202
- [11] J. Lindenstrauss: On a theorem of Murray and Mackey. Anais de Acad. Brasileira Cien.39 (1967) 1-6. Zbl0153.44201MR226366
- [12] —: Weakly compact sets - their topological properties and the Banach spaces they generate. Annals of Mathematics Studies69, Princeton Univ. Press (1972) 235-273. Zbl0232.46019
- [13] W. Johnson and J. Lindenstrauss: Some remarks on weakly compactly generated Banach spaces (to appear)Israel J. Math. Zbl0306.46021MR417760
- [14] H.P. Rosenthal: On injective Banach spaces and the spaces L∞(μ) for finite measures μ. Acta. Math.124 (1970) 205-248. Zbl0207.42803
- [15] —: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp(μ) to Lr(μ). J. Funct. Anal.2 (1969) 176-214. Zbl0185.20303
- [16] —: On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math.37 (1970) 13-36. Zbl0227.46027
- [17] —: On the subspaces of Lp(p > 2) spanned by independent random variables. Israel J. Math.8 (1970) 273-303. Zbl0213.19303
- [18] —: On the span in Lp of sequences of independent random variables (II). Berkeley Symposium on Mathematics, Statistics, and Probability, Vol. II (1972) 149-167. Zbl0255.60003
- [19] W. Sierpinski: Cardinal and Ordinal Numbers. Warsaw, Monografje Matematijczne, 1958. Zbl0083.26803MR95787
- [20] S.L. Troyanski: Equivalent norms and minimal systems in non-separable Banach spaces. Studia Math.43 (1972) 125-138. Zbl0255.46012MR324382
Citations in EuDML Documents
top- Boris A. Efimov, G. I. Chertanov, О подпространствах -приизведения отрезков
- M. Talagrand, Espaces de Banach faiblement -analytiques
- W. Schachermayer, Eberlein-compacts et espaces de Radon
- Genadij A. Sokolov, On some classes of compact spaces lying in -products
- Petr Simon, On continuous images of Eberlein compacts
- David Preiss, Petr Simon, A weakly pseudocompact subspace of Banach space is weakly compact
- István Juhász, Zoltán Szentmiklóssy, Andrzej Szymański, Eberlein spaces of finite metrizability number
- Sophocles Mercourakis, E. Stamati, A new class of weakly -analytic Banach spaces
- Aleksander V. Arhangel'skii, On bicompacta which are unions of two subspaces of a certain type
- Jiří Reif, Some remarks on subspaces of weakly compactly generated Banach spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.