An existence theorem via an intuitive idea and fixed-point theorems

Cheng Ming Lee

Commentationes Mathematicae Universitatis Carolinae (1978)

  • Volume: 019, Issue: 4, page 715-725
  • ISSN: 0010-2628

How to cite

top

Lee, Cheng Ming. "An existence theorem via an intuitive idea and fixed-point theorems." Commentationes Mathematicae Universitatis Carolinae 019.4 (1978): 715-725. <http://eudml.org/doc/16933>.

@article{Lee1978,
author = {Lee, Cheng Ming},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {common fixed point theorem; multivalued mappings},
language = {eng},
number = {4},
pages = {715-725},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An existence theorem via an intuitive idea and fixed-point theorems},
url = {http://eudml.org/doc/16933},
volume = {019},
year = {1978},
}

TY - JOUR
AU - Lee, Cheng Ming
TI - An existence theorem via an intuitive idea and fixed-point theorems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1978
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 019
IS - 4
SP - 715
EP - 725
LA - eng
KW - common fixed point theorem; multivalued mappings
UR - http://eudml.org/doc/16933
ER -

References

top
  1. F. E. BROWDER, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. (1968) Zbl0176.45204MR0229101
  2. J. CARISTI, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1975), 241-251. (1975) MR0394329
  3. M. EDELSTEIN, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79. (1962) Zbl0113.16503MR0133102
  4. K. FAN, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. (1961) Zbl0093.36701MR0131268
  5. K. FAN, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240. (1969) Zbl0185.39503MR0251603
  6. B. R. HALPERN, Fixed point theorems for outward maps, Doctoral Thesis, Univ. of Calif., Los Angeles, Calif. (1965). (1965) MR2614944
  7. B. R. HALPERN, Fixed point theorems for set-valued maps in infinite dimensional spaces, Math. Ann. 189 (1970), 87-98. (1970) Zbl0191.14701MR0273479
  8. S. REICH, Fixed points in locally convex spaces, Math. Z. 125 (1972), 17-31. (1972) Zbl0216.17302MR0306989
  9. E. ROTHE, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, Compos. Math. 5 (1937), 177-196. (1937) Zbl0018.13304
  10. V. M. SEHGAL, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc. 23 (1969), 631-634. (1969) Zbl0186.56503MR0250292
  11. D. R. SMART, Fixed Point Theorems, Cambridge Univ. Press (1974). (1974) Zbl0297.47042MR0467717

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.