Finite element analysis of the Signorini problem

Jaroslav Haslinger

Commentationes Mathematicae Universitatis Carolinae (1979)

  • Volume: 020, Issue: 1, page 1-17
  • ISSN: 0010-2628

How to cite

top

Haslinger, Jaroslav. "Finite element analysis of the Signorini problem." Commentationes Mathematicae Universitatis Carolinae 020.1 (1979): 1-17. <http://eudml.org/doc/16941>.

@article{Haslinger1979,
author = {Haslinger, Jaroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Finite Element Analysis; Signorini Problem; Semicoercive Cases; Rate Of Convergence; Contact Problems of Elastic Bodies; Numerical Solution Of Variational Inequalities},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Finite element analysis of the Signorini problem},
url = {http://eudml.org/doc/16941},
volume = {020},
year = {1979},
}

TY - JOUR
AU - Haslinger, Jaroslav
TI - Finite element analysis of the Signorini problem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1979
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 020
IS - 1
SP - 1
EP - 17
LA - eng
KW - Finite Element Analysis; Signorini Problem; Semicoercive Cases; Rate Of Convergence; Contact Problems of Elastic Bodies; Numerical Solution Of Variational Inequalities
UR - http://eudml.org/doc/16941
ER -

References

top
  1. DUVAUT G., LIONS J. L., Les inéquations en mécanique et en physique, Dunod, Paris 1972. (1972) Zbl0298.73001MR0464857
  2. HLAVÁČEK I., LOVÍŠEK J., Finite-element analysis of the Signorini problem in semi-coercive cases, (to appear) . 
  3. BREZZI F., HAGER W. W., RAVIART P. A., Error estimates for the finite element solution of variational inequalities, Part I, Primal theory. Numer. Math. 28 (1977), 431-443. (1977) Zbl0369.65030MR0448949
  4. CÉA J., Optimisation, Théorie et Algorithmes, Dunod, Paris, 1971. (1971) MR0298892
  5. HASLINGER J., HLAVÁČEK I., Contact between elastic bodies, Part I. Continuous problems, Part II. Approximation, (to appear). 
  6. NITZSCHE J. A., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36, 9-15. MR0341903
  7. FIX G., STRANG G., An analysis of the finite element method, Prentice-Hall, Englewood Cliffs. Zbl0356.65096
  8. NEČAS J., Les méthodes directes en théorie des équations elliptiques, Academics, Prague 1967. (1967) MR0227584
  9. NEČAS J., On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems, Rendiconti di Matematica (2), Vol. 8, Serie VI, 481-498. MR0382827
  10. HLAVÁČEK I., LOVÍŠEK J., A finite element analysis for the Signorini problem in plane elastostatics, Apl. Mat. 22 (1977), 215-228. (1977) MR0446014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.