The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.
In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.
A continuous finite element method to approximate Friedrichs' systems is
proposed and analyzed. Stability is achieved by penalizing the jumps
across mesh
interfaces of the normal derivative of some components of the discrete solution.
The convergence analysis leads to optimal convergence rates
in the graph norm and suboptimal of order ½ convergence rates in
the L2-norm. A variant of the method specialized to
Friedrichs' systems associated with elliptic PDE's in mixed form and
reducing the number...
We consider two static problems which describe the contact between a piezoelectric body and an obstacle, the so-called foundation. The constitutive relation of the material is assumed to be electro-elastic and involves the nonlinear elastic constitutive Hencky's law. In the first problem, the contact is assumed to be frictionless, and the foundation is nonconductive, while in the second it is supposed to be frictional, and the foundation is electrically conductive. The contact is modeled with the...
In questo lavoro sono dati alcuni modelli matematici per il problema di contatto tra una membrana ed un suolo od ostacolo elastico. Viene costruita una approssimazione lineare a tratti della soluzione e, tramite una disequazione variazionale discreta, se ne dà il corrispondente teorema di convergenza.
We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for
nearly and perfectly incompressible linear elasticity. These mixed methods allow the
choice of polynomials of any order k ≥ 1 for the approximation of the
displacement field, and of order k or k − 1 for the
pressure space, and are stable for any positive value of the stabilization parameter. We
prove the optimal convergence of the displacement and stress fields...
We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields in both cases, with error estimates that are independent...
We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for
nearly and perfectly incompressible linear elasticity. These mixed methods allow the
choice of polynomials of any order k ≥ 1 for the approximation of the
displacement field, and of order k or k − 1 for the
pressure space, and are stable for any positive value of the stabilization parameter. We
prove the optimal convergence of the displacement and stress fields...
Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven.
From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
Currently displaying 1 –
20 of
326