Least and largest initial completions. II.

Jiří Adámek; Horst Herrlich; George E. Strecker

Commentationes Mathematicae Universitatis Carolinae (1979)

  • Volume: 020, Issue: 1, page 59-77
  • ISSN: 0010-2628

How to cite

top

Adámek, Jiří, Herrlich, Horst, and Strecker, George E.. "Least and largest initial completions. II.." Commentationes Mathematicae Universitatis Carolinae 020.1 (1979): 59-77. <http://eudml.org/doc/16946>.

@article{Adámek1979,
author = {Adámek, Jiří, Herrlich, Horst, Strecker, George E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Initial Completions; Concrete Category; Cartesian Closedness},
language = {eng},
number = {1},
pages = {59-77},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Least and largest initial completions. II.},
url = {http://eudml.org/doc/16946},
volume = {020},
year = {1979},
}

TY - JOUR
AU - Adámek, Jiří
AU - Herrlich, Horst
AU - Strecker, George E.
TI - Least and largest initial completions. II.
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1979
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 020
IS - 1
SP - 59
EP - 77
LA - eng
KW - Initial Completions; Concrete Category; Cartesian Closedness
UR - http://eudml.org/doc/16946
ER -

References

top
  1. ADÁMEK J. H. HERRLICH G. E. STRECKER, The structure of initial completions, Preprint. MR0558103
  2. ADÁMEK J. V. KOUBEK, What to embed into a cartesian closed topological category, Comment. Math. Univ. Carolinae 18 (1977), 817-821. (1977) MR0460413
  3. ADÁMEK J. V. KOUBEK, Cartesian closed fibre-completions, Preprint. 
  4. ANTOINE P., Étude élementaire d'ensembles structures, Bull. Soc. Math. Belgique 18 (1966), 144-166 and 337-414. (1966) 
  5. ANTOINE P., Catégories fermées et quasi-topologies III, Preprint. 
  6. BORGER R. W. THOLEN, Is any semi-topological functor topologically algebraic?, Preprint. 
  7. DAY B., A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), 1-11. (1972) Zbl0236.18004MR0296126
  8. FRIED E. J. SICHLER, Homomorphisms of integral domains, Trans. Amer. Math. Soc. 225 (1972), 163-182. (1972) MR0422382
  9. GRATZER G. J. SICHLER, On the endomorphism semigroup (and category) of bounded lattices, Proc. Amer. Math. Soc. 34 (1972), 67-70. (1972) 
  10. HERRLICH H., Initial completions, Math. Z. 150 (1976), 101-110. (1976) Zbl0319.18001MR0437614
  11. HERRLICH H., Cartesian closed topological categories, Math. Colloq. Univ. Cape Town IX (1974), 1-16. (1974) Zbl0318.18011MR0460414
  12. HOFFMANN R.-E., Note on universal topological completion, Preprint. Zbl0429.18002MR0548489
  13. HEDRLÍN Z. J. Lambek, How comprehensive is the category of semigroups?, J. Algebra 11 (1969), 195-212. (1969) MR0237611
  14. HERRLICH H. R. NAKAGAWA G. E. STRECKER T. TITCOMB, Semitopological and topologically-algebraic functors (are and are not equivalent), Preprint. 
  15. HEDRLÍN Z. A. PULTR, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392-406. (1966) MR0191858
  16. HEDRLÍN Z. A. PULTR, Symmetric relations (undirected graphs) with given semigroups, Monatsh. Math. 69 (1965), 318-322. (1965) MR0188082
  17. HERRLICH H. G. E. STRECKER, Category Theory, Allyn and Bacon, Boston, 1973. (1973) MR0349791
  18. HERRLICH H. G. E. STRECKER, Semi-universal maps and universal initial completions, Preprint. MR0569338
  19. HUŠEK M., S -categories, Comment. Math. Univ. Carolinae 5 (1964), 37-46. (1964) MR0174027
  20. KOUBEK V., Each concrete category has a representation by T 2 paracompact topological spaces, Comment. Math. Univ. Carolinae 15 (1974), 655-663. (1974) Zbl0291.54019MR0354806
  21. KUČERA L., Úplná vnoření struktur, Dissertation, Charles University, Praha 1973. (1973) 
  22. KUČERA L., A. PULTR, On a mechanism of defining morphisms in concrete categories, Cahiers Topol. Geom. Diff. 13 (1972), 397-410. (1972) MR0393173
  23. MANES E. G., Algebraic Theories, Springer Verlag 1975. (1975) MR0419557
  24. PORST H. E., Characterization of Mac Neille completions and topological functors, Preprint. 
  25. PULTR A. J. SICHLER, Primitive classes of algebras with two unary idempotent operations, containing all algebraic categories as full subcategories, Comment. Math. Univ. Carolinae 10 (1969), 425-440. (1969) MR0253969
  26. SICHLER J., Non-constant endomorphisms of lattices, Proc. Amer. Math. Soc. 34 (1972), 67-70. (1972) MR0291032
  27. TRNKOVÁ V., All small categories are representable by continuous non-constant mappings of bicompacta, Dokl. Akad. Nauk SSSR 230 (1976), 1403-1405. (1976) MR0417259
  28. TRNKOVÁ V., Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolinae 13 (1972), 283-295. (1972) MR0303486

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.