Each concrete category has a representation by paracompact topological spaces
Commentationes Mathematicae Universitatis Carolinae (1974)
- Volume: 015, Issue: 4, page 655-664
- ISSN: 0010-2628
Access Full Article
topHow to cite
topKoubek, Václav. "Each concrete category has a representation by $T_2$ paracompact topological spaces." Commentationes Mathematicae Universitatis Carolinae 015.4 (1974): 655-664. <http://eudml.org/doc/16655>.
@article{Koubek1974,
author = {Koubek, Václav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {655-664},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Each concrete category has a representation by $T_2$ paracompact topological spaces},
url = {http://eudml.org/doc/16655},
volume = {015},
year = {1974},
}
TY - JOUR
AU - Koubek, Václav
TI - Each concrete category has a representation by $T_2$ paracompact topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1974
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 015
IS - 4
SP - 655
EP - 664
LA - eng
UR - http://eudml.org/doc/16655
ER -
References
top- H. COOK, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1966), 241-249. (1966) MR0220249
- H. HERRLICH, On the concept of reflections in general topology, Proc. Symp. on extension theory of topological structures, Berlin 1967. (1967)
- L. KUČERA, Úplná vnoření, Thesis, Prague 1973. (1973)
- A. PULTR, On selecting of morphisms among all mappings between underlying sets of objects in concrete categories and realizations of these, Comment. Math. Univ. Carolinae 8 (1967), 53-83. (1967) Zbl0166.27502MR0210764
- V. TRNKOVÁ, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolinae 13 (1972), 283-295. (1972) MR0303486
Citations in EuDML Documents
top- Jiří Rosický, Věra Trnková, Representability of concrete categories by non-constant morphisms
- Jiři Rosický, Walter Tholen, Orthogonal and prereflective subcategories
- Horst Herrlich, Epireflective subcategories of TOP need not be cowell-powered
- Věra Trnková, Universal concrete categories and functors
- Horst Herrlich, Realizations of topologies and closure operators by set systems and by neighbourhoods
- Jiří Adámek, Horst Herrlich, George E. Strecker, Least and largest initial completions. II.
- Jiří Adámek, A farewell to Professor RNDr. Věra Trnková, DrSc.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.