# Each concrete category has a representation by ${T}_{2}$ paracompact topological spaces

Commentationes Mathematicae Universitatis Carolinae (1974)

- Volume: 015, Issue: 4, page 655-664
- ISSN: 0010-2628

## Access Full Article

top## How to cite

topKoubek, Václav. "Each concrete category has a representation by $T_2$ paracompact topological spaces." Commentationes Mathematicae Universitatis Carolinae 015.4 (1974): 655-664. <http://eudml.org/doc/16655>.

@article{Koubek1974,

author = {Koubek, Václav},

journal = {Commentationes Mathematicae Universitatis Carolinae},

language = {eng},

number = {4},

pages = {655-664},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Each concrete category has a representation by $T_2$ paracompact topological spaces},

url = {http://eudml.org/doc/16655},

volume = {015},

year = {1974},

}

TY - JOUR

AU - Koubek, Václav

TI - Each concrete category has a representation by $T_2$ paracompact topological spaces

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1974

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 015

IS - 4

SP - 655

EP - 664

LA - eng

UR - http://eudml.org/doc/16655

ER -

## References

top- H. COOK, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1966), 241-249. (1966) MR0220249
- H. HERRLICH, On the concept of reflections in general topology, Proc. Symp. on extension theory of topological structures, Berlin 1967. (1967)
- L. KUČERA, Úplná vnoření, Thesis, Prague 1973. (1973)
- A. PULTR, On selecting of morphisms among all mappings between underlying sets of objects in concrete categories and realizations of these, Comment. Math. Univ. Carolinae 8 (1967), 53-83. (1967) Zbl0166.27502MR0210764
- V. TRNKOVÁ, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolinae 13 (1972), 283-295. (1972) MR0303486

## Citations in EuDML Documents

top- Jiří Rosický, Věra Trnková, Representability of concrete categories by non-constant morphisms
- Jiři Rosický, Walter Tholen, Orthogonal and prereflective subcategories
- Horst Herrlich, Epireflective subcategories of TOP need not be cowell-powered
- Věra Trnková, Universal concrete categories and functors
- Horst Herrlich, Realizations of topologies and closure operators by set systems and by neighbourhoods
- Jiří Adámek, Horst Herrlich, George E. Strecker, Least and largest initial completions. II.
- Jiří Adámek, A farewell to Professor RNDr. Věra Trnková, DrSc.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.