On approximate Dini derivates and one-sided approximate derivatives of arbitrary functions

Luděk Zajíček

Commentationes Mathematicae Universitatis Carolinae (1981)

  • Volume: 022, Issue: 3, page 549-560
  • ISSN: 0010-2628

How to cite

top

Zajíček, Luděk. "On approximate Dini derivates and one-sided approximate derivatives of arbitrary functions." Commentationes Mathematicae Universitatis Carolinae 022.3 (1981): 549-560. <http://eudml.org/doc/17128>.

@article{Zajíček1981,
author = {Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {approximate Dini derivates; one-sided approximate derivatives; sigma- porous sets; Baire class one functions; Jarnik-Blumberg method; Denjoy- Young-Saks theorem},
language = {eng},
number = {3},
pages = {549-560},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On approximate Dini derivates and one-sided approximate derivatives of arbitrary functions},
url = {http://eudml.org/doc/17128},
volume = {022},
year = {1981},
}

TY - JOUR
AU - Zajíček, Luděk
TI - On approximate Dini derivates and one-sided approximate derivatives of arbitrary functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1981
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 022
IS - 3
SP - 549
EP - 560
LA - eng
KW - approximate Dini derivates; one-sided approximate derivatives; sigma- porous sets; Baire class one functions; Jarnik-Blumberg method; Denjoy- Young-Saks theorem
UR - http://eudml.org/doc/17128
ER -

References

top
  1. H. ALLEN C. L. BELNA, Disjoint essential angular cluster sets, J. Korean Math. Soc. 2 (1974), 49-51. (1974) MR0382650
  2. A. M. BRUCKNER, Differentiation of real functions, Lecture notes in Mathematics, No. 659, Springer Verlag, 1978. (1978) Zbl0382.26002MR0507448
  3. E. P. DOLŽENKO, The boundary properties of arbitrary functions, Russian, Isv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. (1967) MR0217297
  4. M. J. EVANS P. D. HUMKE, Directional cluster sets and essential directional cluster sets of гeal functions defined in the upper half plane, Rev. Roumaine Math. Pures Appl. 23 (1978), 533-542. (1978) MR0492273
  5. K. M. GARG, On asymmetrical derivates of non-differentiable functions, Can. J. Math. 20 (1968), 135-143. (1968) Zbl0194.08601MR0220878
  6. R. L. JEFFERY, The derivatives of arbitrary functions over arbitrary sets, Ann. of Mat. 36 (1935), 438-447. (1935) MR1503233
  7. L. MIŠÍK, Notes on an approximate derivative, Mat. Časop. 22 (1972), 108-114. (1972) MR0315057
  8. D. PREISS, Approximate derivatives and Baire classes, Czech. Math. Journ. 21 (1971), 373-382. (1971) Zbl0221.26007MR0286951
  9. H. H. PU J. D. CHEN H. W. PU, A theorem on approximate derivates, Bull. Inst. Math. Acad. Sinica 2 (1974), 87-91. (1974) MR0342654
  10. S. SAKS, Theory of the Integral, New York, 1937. (1937) Zbl0017.30004
  11. L. E. SNYDER, Approximate Stolz angle limits, Proc. Amer. Math. Soc. 17 (1966), 416-422. (1966) Zbl0158.05102MR0188383
  12. G. TOLSTOV, Sur la dérivée approximative exacte, Mat. Sb. 4 (46) (1938), 499-504. (1938) Zbl0021.01602
  13. L. ZAJÍČEK, On cluster sets of arbitrary functions, Fund. Math. 83 (1974), 197-217. (1974) MR0338294
  14. L. ZAJÍČEK, On the intersection of the sets of the right and left internal approximate derivatives, Czech. Math. Journ. 23 (1973), 629-634. (1973) MR0323969
  15. L. ZAJÍČEK, On the symmetry of Dini derivates of arbitrary functions, Comment. Math. Univ. Carolinae 22 (1981), 195-209. (1981) MR0609947

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.