On the symmetry of Dini derivates of arbitrary functions

Luděk Zajíček

Commentationes Mathematicae Universitatis Carolinae (1981)

  • Volume: 022, Issue: 1, page 195-209
  • ISSN: 0010-2628

How to cite

top

Zajíček, Luděk. "On the symmetry of Dini derivates of arbitrary functions." Commentationes Mathematicae Universitatis Carolinae 022.1 (1981): 195-209. <http://eudml.org/doc/17098>.

@article{Zajíček1981,
author = {Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Dini derivatives; sigma-porous sets; boundary behaviour of functions; Jarnik-Blumberg method; cluster sets},
language = {eng},
number = {1},
pages = {195-209},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the symmetry of Dini derivates of arbitrary functions},
url = {http://eudml.org/doc/17098},
volume = {022},
year = {1981},
}

TY - JOUR
AU - Zajíček, Luděk
TI - On the symmetry of Dini derivates of arbitrary functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1981
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 022
IS - 1
SP - 195
EP - 209
LA - eng
KW - Dini derivatives; sigma-porous sets; boundary behaviour of functions; Jarnik-Blumberg method; cluster sets
UR - http://eudml.org/doc/17098
ER -

References

top
  1. C. L. BELNA M. J. EVANS P. D. HUMKE, Most directional cluster sets have common values, Fund. Math. 101 (1978), 1-10. (1978) MR0512239
  2. H. BLUMBERG, A theorem on arbitrary functions of two variables with applications, Fund. Math. 16 (1930), 17-24. (1930) 
  3. A. M. BRUCKNER, Differentiation of real functions, Lecture notes in Mathematics, No. 659, Springer Verlag, 1978. (1978) Zbl0382.26002MR0507448
  4. A. M. BRUCKNER C. GOFFMAN, The boundary behaviour of real functions in the upper half plane, Rev. Roumaine Math. Pures Appl. 11 (1966), 507-518. (1966) MR0206173
  5. E. P. DOLŽENKO, The boundary properties of arbitrary functions, Russian, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. (1967) MR0217297
  6. M. J. EVANS P. D. HUMKE, Directional cluster sets ana essential directional cluster sets of real functions defined in the upper half plane, Rev. Roumaine Math. Pures Appl. 23 (1978), 533-542. (1978) MR0492273
  7. V. JARNÍK, Sur les fonctions de la première classe de Baire, Bull. Internat. Acad. Sci. Boheme 1926. (1926) 
  8. V. JARNÍK, Sur les fonctions de deux variables reélies, Fund. Math. 27 (1936), 147-150. (1936) 
  9. J. LUKEŠ L. ZAJÍČEK, When finely continuous functions are of the first class of Baire, Comment. Math. Univ. Carolinae 18 (1977), 647-657. (1977) MR0457646
  10. F. MIGNOT, Controle dans les inéquations variationelles elliptiques, J. Functional Analysis 22 (1976), 130-185. (1976) Zbl0364.49003MR0423155
  11. C. NEUGEBAUER, A theorem on derivatives, Acta Sci. Math. Szeged, 23 (1962), 79-81. (1962) Zbl0105.04602MR0140624
  12. S. SAKS, Theory of the Integral, New York, 1937. (1937) Zbl0017.30004
  13. L. ZAJÍČEK, On cluster sets of arbitrary functions, Fund. Math. 83 (1974), 197-217. (1974) MR0338294
  14. L. ZAJÍČEK, Sets of σ -porosity and sets of σ -porosity ( q ) , Časopis pěst. mat. 101 (1976), 350-359. (1976) Zbl0341.30026MR0457731

Citations in EuDML Documents

top
  1. David Preiss, Luděk Zajíček, On the symmetry of approximate Dini derivates of arbitrary functions
  2. Nacereddine Belili, Henri Heinich, Mass transport problem and derivation
  3. Martin Koc, Luděk Zajíček, On Kantorovich's result on the symmetry of Dini derivatives
  4. Luděk Zajíček, On approximate Dini derivates and one-sided approximate derivatives of arbitrary functions
  5. Luděk Zajíček, Obecná teorie derivování funkcí a měr na katedře matematické analýzy MFF UK

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.