On the equation x ' = f ( t , x ) in Banach spaces

Józef Banaś; Andrzej Hajnosz; Stanisław Wędrychowicz

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 2, page 233-247
  • ISSN: 0010-2628

How to cite

top

Banaś, Józef, Hajnosz, Andrzej, and Wędrychowicz, Stanisław. "On the equation $x^{\prime } = f(t, x)$ in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 023.2 (1982): 233-247. <http://eudml.org/doc/17176>.

@article{Banaś1982,
author = {Banaś, Józef, Hajnosz, Andrzej, Wędrychowicz, Stanisław},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {measure of noncompactness; fixed point theorem of Darbo type; Banach space},
language = {eng},
number = {2},
pages = {233-247},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the equation $x^\{\prime \} = f(t, x)$ in Banach spaces},
url = {http://eudml.org/doc/17176},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Banaś, Józef
AU - Hajnosz, Andrzej
AU - Wędrychowicz, Stanisław
TI - On the equation $x^{\prime } = f(t, x)$ in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 2
SP - 233
EP - 247
LA - eng
KW - measure of noncompactness; fixed point theorem of Darbo type; Banach space
UR - http://eudml.org/doc/17176
ER -

References

top
  1. A. AMBROSETTI, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 354-360. (1967) Zbl0174.46001MR0222426
  2. J. BANAŚ, On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carolinae 21 (1980), 131-143. (1980) MR0566245
  3. J. BANAŚ K. GOEBEL, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol. 60 (1980), New York and Basel. (1980) MR0591679
  4. A. CELLINA, On the local existence of solutions of ordinary differential equations, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 293-296. (1972) Zbl0255.34053MR0315237
  5. J. DANEŠ, On densifying and related mappings and their applications in nonlinear functional analysis, Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-56. (1974) MR0361946
  6. G. DARBO, Punti uniti in transformazioni a condominino non compatto, Rend. Sem. Math. Univ. Padova 24 (1955), 84-92. (1955) MR0070164
  7. K. DEIMLING, Ordinary differential equations in Banach spaces, Lecture Notes in Mathematics 596, Springer Verlag 1977. (1977) Zbl0361.34050MR0463601
  8. K. GOEBEL W. RZYMOWSKT, An existence theorem for the equation x = f ( t , x ) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 18 (1970), 367-370. (1970) MR0269957
  9. K. KURATOWSKI, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. (1930) 
  10. T. ROGER, On Nagumo's condition, Canad. Math. Bull. 15 (1972), 609-611. (1972) 
  11. B. RZEPECKI, Remarks on Schauder's Fixed point principle and its applications, Bull. Acad. Polon. Sci., Sér. Sci. Math. 27 (1979), 473-480. (1979) Zbl0435.47057MR0560183
  12. B. N. SADOVSKI, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144. (1972) MR0428132
  13. S. SZUFLA, Some remarks on ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. (1968) Zbl0177.18902MR0239238
  14. S. SZUFLA, Measure of noncompactness and ordinary differential equations in Banach spaces, ibidem, 19 (1971), 831-835. (1971) MR0303043
  15. S. SZUFLA, On the existence of solutions of ordinary differential equations in Banach spaces, Boll. Un. Mat. Ital. 5, 15-A (1978), 535-544. (1978) Zbl0402.34002MR0521098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.