Un teorema di esistenza per le equazioni differenziali negli spazi di Banach

Antonio Ambrosetti

Rendiconti del Seminario Matematico della Università di Padova (1967)

  • Volume: 39, page 349-361
  • ISSN: 0041-8994

How to cite

top

Ambrosetti, Antonio. "Un teorema di esistenza per le equazioni differenziali negli spazi di Banach." Rendiconti del Seminario Matematico della Università di Padova 39 (1967): 349-361. <http://eudml.org/doc/107252>.

@article{Ambrosetti1967,
author = {Ambrosetti, Antonio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {functional analysis},
language = {ita},
pages = {349-361},
publisher = {Seminario Matematico of the University of Padua},
title = {Un teorema di esistenza per le equazioni differenziali negli spazi di Banach},
url = {http://eudml.org/doc/107252},
volume = {39},
year = {1967},
}

TY - JOUR
AU - Ambrosetti, Antonio
TI - Un teorema di esistenza per le equazioni differenziali negli spazi di Banach
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1967
PB - Seminario Matematico of the University of Padua
VL - 39
SP - 349
EP - 361
LA - ita
KW - functional analysis
UR - http://eudml.org/doc/107252
ER -

References

top
  1. [1] Bourbaki - Fonctions d'une variable reélle. Chap. IV - (1951). 
  2. [2] C. Corduneanu- Equazioni differenziali negli spazi di Banach. Teoremi di esistenza e prolungabilità. Rendiconti dell'Accademia dei Lincei. Vol. XXIII-(1957). Zbl0084.34201
  3. [3] G. Darbo - Punti uniti in trasformaziani a codominio non compatto. Rendiconti del Seminario Matematico della Università di Padova. Vol. XXIV - (1955). Zbl0064.35704MR70164
  4. [4] J. Dieudonné - Fondements de l'Analyse Moderne. (1963). Zbl0114.26602
  5. [5] M.A. Krasnosel'skii - S.G., Krein- Non local existence theorems and uniqueness theorems for systems of ordinary differential equalions. (In russo) Doklady Akad. Nauk C. C. C. P. - 102 - (1955). MR71588

Citations in EuDML Documents

top
  1. Ireneusz Kubiaczyk, Aneta Sikorska, Differential equations in banach space and henstock-kurzweil integrals
  2. Danuta Ozdarska, Stanisław Szufla, Weak solutions of a boundary value problem for nonlinear ordinary differential equation of second order in Banach spaces
  3. Giovanni Emmanuele, Existence of solutions of perturbed O.D.E.'s in Banach spaces
  4. Bogdan Rzepecki, On hyperbolic partial differential equations in Banach spaces
  5. Bogdan Rzepecki, An existence theorem for bounded solutions of differential equations in Banach spaces
  6. Bogdan Rzepecki, A note on fixed point theorem of Schauder type with applications
  7. Ireneusz Kubiaczyk, Aneta Sikorska-Nowak, Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals
  8. Antoni Sadowski, On the Picard problem for hyperbolic differential equations in Banach spaces
  9. Bogdan Rzepecki, An application of a fixed point principle of Sadovskij to differential equations on the real line
  10. Dariusz Bugajewski, On the Volterra integral equation and axiomatic measures of weak noncompactness

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.