On von Neumann regular rings. VII.

Roger Yue Chi Ming

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 3, page 427-442
  • ISSN: 0010-2628

How to cite

top

Yue Chi Ming, Roger. "On von Neumann regular rings. VII.." Commentationes Mathematicae Universitatis Carolinae 023.3 (1982): 427-442. <http://eudml.org/doc/17192>.

@article{YueChiMing1982,
author = {Yue Chi Ming, Roger},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {V-rings; complement left ideal; pQ-injective; fQ-injective; PQF- injective; p-injective; f-injective; MUP-injective rings},
language = {eng},
number = {3},
pages = {427-442},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On von Neumann regular rings. VII.},
url = {http://eudml.org/doc/17192},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Yue Chi Ming, Roger
TI - On von Neumann regular rings. VII.
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 3
SP - 427
EP - 442
LA - eng
KW - V-rings; complement left ideal; pQ-injective; fQ-injective; PQF- injective; p-injective; f-injective; MUP-injective rings
UR - http://eudml.org/doc/17192
ER -

References

top
  1. BIRKENMEIER G. F., Baer rings and quasi-continuous rings have a MDSN, Pac. J. Math. 97 (1981), 283-292. (1981) Zbl0432.16010MR0641158
  2. CHATTERS A. W, HAJARNAVIS C. R., Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford 28 (1977), 61-80. (1977) Zbl0342.16023MR0437595
  3. FAITH C., Lectures on injective modules and quotient rings, Lecture notes in Math. n° 49, Springer-Verlag, Berlin (1967). (1967) Zbl0162.05002MR0227206
  4. FAITH C, Algebra II: Ring Theory, Springer-Verlag, Vol. 191 (1976). (191) MR0427349
  5. FISHER J. W., Von Neumann regular rings versus V-rings, Ring Theory: Proc. Oklahoma Conference, Lecture note n° 7, Dekker (New York) (1974), 101-119. (1974) MR0332866
  6. GOODEARL K. R., Ring Theory: Non-singular rings and modules, Pure and Appl. Math. n° 33, Dekker (New York) (1976). (1976) MR0429962
  7. GOODEARL K. R., Von Neumann regular rings, Monographs and studies in Math. 4, Pitman (London) (1979). (1979) Zbl0411.16007MR0533669
  8. HIRANO Y., TOMINAGA H., Regular rings, V -rings and their generalizations, Hiroshima Math. J. 9 (1979), 137-149. (1979) Zbl0413.16015MR0529329
  9. UTUMI Y., On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158-173. (1965) Zbl0144.27301MR0174592
  10. YUE CHI MING R., On elemental annihilator rings, Proc. Edinburgh Math. Soc. 17 (1970), 187-188. (1970) Zbl0184.06304MR0308181
  11. YUE CHI MING R., On von Neumann regular rings, III, Monatshefte für Math. 86 (1978), 251-257. (1978) Zbl0414.16006MR0517029
  12. YUE CHI MING R., On generalizations of V -rings and regular rings, Math. J. Okayama Univ. 20 (1978), 123-129. (1978) Zbl0402.16014MR0519559
  13. YUE CHI MING R., On V -rings and prime rings, J. Algebra 62 (1980), 13-20. (1980) Zbl0429.16018MR0561114
  14. YUE CHI MING R., Von Neumann regularity and weak p-injectivity, Yokohama Math. J. 28 (1980), 59-68. (1980) Zbl0456.16017MR0623750
  15. YUE CHI MING R., On von Neumann regular rings, V, Math. J. Okayama Univ. 22 (1980), 151-160. (1980) Zbl0451.16008MR0595796
  16. YUE CHI MING R., On regular rings and self-injective rings, Monatshefte für Math. 91 (1981), 153-166. (1981) Zbl0452.16007MR0618805
  17. YUE CHI MING R., On biregular and regular rings, Comment. Math. Univ. Carolinae 22 (1981), 595-606. (1981) Zbl0485.16015MR0633587
  18. YUE CHI MING R., On V -rings and unit-regular rings, Rend. Sem. Mat. Univ. Padova 64 (1981), 127-140. (1981) Zbl0474.16008MR0636631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.