Another note on closed N -cells in 𝐑 N

Rae W. J. Mitchell

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 4, page 805-810
  • ISSN: 0010-2628

How to cite

top

Mitchell, Rae W. J.. "Another note on closed $N$-cells in ${\bf R}^N$." Commentationes Mathematicae Universitatis Carolinae 023.4 (1982): 805-810. <http://eudml.org/doc/17223>.

@article{Mitchell1982,
author = {Mitchell, Rae W. J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {region between two n-cells in real n-space; deformation retraction; obstruction theory for ANR's},
language = {eng},
number = {4},
pages = {805-810},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Another note on closed $N$-cells in $\{\bf R\}^N$},
url = {http://eudml.org/doc/17223},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Mitchell, Rae W. J.
TI - Another note on closed $N$-cells in ${\bf R}^N$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 4
SP - 805
EP - 810
LA - eng
KW - region between two n-cells in real n-space; deformation retraction; obstruction theory for ANR's
UR - http://eudml.org/doc/17223
ER -

References

top
  1. R. H. BING, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961) 294 - 305. (1961) Zbl0109.15406MR0131265
  2. G. E. BREDON, Sheaf Theory, McGraw-Hill, 1967. (1967) Zbl0158.20505MR0221500
  3. J. W. CANNON, What is a topological manifold ? - the recognition problem, Bull. Amer. Math. Soc. 84 (1978) 832 - 866. (1978) MR0494113
  4. S. FERRY, Homotoping ε -maps to homeomorphisms, Amer. J. Math. 101 (1979) 567 - 582. (1979) Zbl0426.57005MR0533191
  5. R. H. FOX E. ARTIN, Some wild cells and spheres in three dimensional space, Annals of Maths., 49 (1948) 979 - 990. (1948) MR0027512
  6. B. GRAY, Homotopy Theory; an introduction to algebraic topology, Academic Press, 1975. (1975) Zbl0322.55001MR0402714
  7. S.-T. HU, Theory of Retracts, Wayne state University Press, 1965. (1965) Zbl0145.43003MR0181977
  8. S.-T. HU, Homotopy Theory, Academic Press, 1959. (1959) Zbl0088.38803MR0106454
  9. R. C. KIRBY, Stable homeomorphisms and the annulus conjecture, Annals of Maths. 89 (1969) 575 - 582. (1969) Zbl0176.22004MR0242165
  10. Y. KODAMA, Maps of a fully normal space into an absolute neighbourhood retract, Sci. Reports Tokyo Kyoiku Daigaku, Sect. A 5 (19S5) 37-47. (19S5) MR0067485
  11. M. MARKL, A note on closed N-cells in R N , Comment. Math. Univ. Carolinae 23 (1982) 355 - 357. (1982) MR0664980

NotesEmbed ?

top

You must be logged in to post comments.