Local and global existence and behaviour for t of solutions of the Navier-Stokes equations

Wolf von Wahl

Commentationes Mathematicae Universitatis Carolinae (1985)

  • Volume: 026, Issue: 1, page 151-167
  • ISSN: 0010-2628

How to cite

top

von Wahl, Wolf. "Local and global existence and behaviour for $t\rightarrow \infty $ of solutions of the Navier-Stokes equations." Commentationes Mathematicae Universitatis Carolinae 026.1 (1985): 151-167. <http://eudml.org/doc/17366>.

@article{vonWahl1985,
author = {von Wahl, Wolf},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {abstract equation; Navier-Stokes equations; local existence; local strong solution; weak solutions; decay estimates; velocity gradients},
language = {eng},
number = {1},
pages = {151-167},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Local and global existence and behaviour for $t\rightarrow \infty $ of solutions of the Navier-Stokes equations},
url = {http://eudml.org/doc/17366},
volume = {026},
year = {1985},
}

TY - JOUR
AU - von Wahl, Wolf
TI - Local and global existence and behaviour for $t\rightarrow \infty $ of solutions of the Navier-Stokes equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1985
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 026
IS - 1
SP - 151
EP - 167
LA - eng
KW - abstract equation; Navier-Stokes equations; local existence; local strong solution; weak solutions; decay estimates; velocity gradients
UR - http://eudml.org/doc/17366
ER -

References

top
  1. Fujita H., Kato T., On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16, 269-315 (1964). (1964) Zbl0126.42301MR0166499
  2. Fujiwara D., Morimoto H., An L r -theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 24, 685-700 (1977). (1977) Zbl0386.35038MR0492980
  3. Giga Y., Analyticity of the Semigroup Generated by the Stokes Operator in L r -Spaces, Math. Z. 178, 297-329 (1981). (1981) Zbl0473.35064MR0635201
  4. Giga Y., Domains in L r -spaces of fractional powers of the Stokes operator, to appear in Archive Rat. Mech. Anal. 
  5. Giga Y., Regularity criteria for weak solutions of the Navier-Stokes system, Preprint. Zbl0598.35094MR0843578
  6. Kato T., Nonlinear evolution equations in Banach spaces, Proc. Symp. Appl. Math. 17, 50-67, New York: American Mathematical Society 1965. (1965) Zbl0173.17104MR0184099
  7. Ladyzhenskaja O.A., The Mathematical Theory of Viscous Incompressible Flow, New York, London, Paris: Gordon and Breach 1969. (1969) MR0254401
  8. Lions J. L., Quelques méthodes de résolution des problémes aux limites non linéaires, Paris: Dunod 1969. (1969) Zbl0189.40603MR0259693
  9. Masuda K., On the stability of incompressible viscous fluid motions past objects, J. Math. Soc. Japan 27, 294-327 (1975). (1975) Zbl0303.76011MR0440224
  10. Serrin J., The initial value problem for the Navier-Stokes equations, Nonlinear Problems (R. Langer ed.), 69-98, Madison: The University of Wisconsin press 1963. (1963) Zbl0115.08502MR0150444
  11. Sohr H., Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes, Math. Z. 184, 359-376 (1983). (1983) Zbl0506.35084MR0716283
  12. Solonnikov V. A., Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8, 467-529 (1977). (1977) Zbl0404.35081
  13. Sohr H., Wahl W. von, On the Singular Set and the Uniqueness of Weak Solutions of the Navier-Stokes Equations, Sonderforschungsbereich 72 "Approximation und Optimierung", Universität Bonn. Preprint no. 635 (1984). (1984) MR0762786
  14. Wahl W. von, Über das Verhalten für t 0 der Lösungen nichtlinearer parabolischer Gleichungen, insbesondere der Gleichungen von Navier-Stokes, Sonderforschungsbereich 72 "Approximation und Optiraierung", Universität Bonn. Preprint no. 602 (1983). Berichtigung hierzu. Sonderforschungsbereich 72 "Approxirmation und Optimierung", Universität Bonn. Preprint-Reihe (1983). (1983) MR0742689
  15. Wahl W. von, Regularity Questions for the Navier-Stokes Equations. Approximation Methods for Navier-Stokes Problems, Proceedings, Paderborn, Germany 1979. Lecture Notes in Mathematics 771 (1900). (1979) MR0566019
  16. Wahl W. von, Regularitätsfragen für die instationären Navier-Stokesschen Gleichungen in höheren Dimensionen, J. Math. Soc. Japan 32, 263-283 (1980). (1980) MR0567419
  17. Wahl W. von, Regularity of Weak Solutions of the Navier-Stokes Equations, To appear in the Proceedings of the 1983 AMS Summer Institute on Nonlinear Functional Analysis and Applications. Proceedings of Symposia in Pure Mathematics. Am. Math. Soc.: Providence, Rhode Island. (1983) MR0843635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.