A simple geometric proof of a theorem on
Commentationes Mathematicae Universitatis Carolinae (1985)
- Volume: 026, Issue: 2, page 233-239
- ISSN: 0010-2628
Access Full Article
topHow to cite
topTůma, Jiří. "A simple geometric proof of a theorem on $M_n$." Commentationes Mathematicae Universitatis Carolinae 026.2 (1985): 233-239. <http://eudml.org/doc/17375>.
@article{Tůma1985,
author = {Tůma, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {vector space over a finite field; congruence lattice},
language = {eng},
number = {2},
pages = {233-239},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A simple geometric proof of a theorem on $M_n$},
url = {http://eudml.org/doc/17375},
volume = {026},
year = {1985},
}
TY - JOUR
AU - Tůma, Jiří
TI - A simple geometric proof of a theorem on $M_n$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1985
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 026
IS - 2
SP - 233
EP - 239
LA - eng
KW - vector space over a finite field; congruence lattice
UR - http://eudml.org/doc/17375
ER -
References
top- R. W. QUACKENBUSH, A note on a problem of Goralčík, Coll. Math. Soc. János Bolyai, Vol. 17. Contributions to Universal Algebra, Szeged (Hungary) (1975), 363-364. (1975) MR0476612
- H. WERNER, Which partition lattices are congruence lattices?, Coll. Math. Soc. János Bolyai, Vol. 14. Lattice Theory, Szeged (Hungary) (1974), 433-453. (1974) MR0441830
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.