Surjectivity theorems for multi-valued mappings of accretive type

Claudio H. Morales

Commentationes Mathematicae Universitatis Carolinae (1985)

  • Volume: 026, Issue: 2, page 397-413
  • ISSN: 0010-2628

How to cite

top

Morales, Claudio H.. "Surjectivity theorems for multi-valued mappings of accretive type." Commentationes Mathematicae Universitatis Carolinae 026.2 (1985): 397-413. <http://eudml.org/doc/17393>.

@article{Morales1985,
author = {Morales, Claudio H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {multivalued version of Deimling's domain invariance theorem; fixed; point property; surjectivity; expansive m-accretive multivalued maps acting on a subset of a; Banach space with uniformly convex dual; expansive m- accretive multivalued maps acting on a subset of a Banach space with uniformly convex dual},
language = {eng},
number = {2},
pages = {397-413},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Surjectivity theorems for multi-valued mappings of accretive type},
url = {http://eudml.org/doc/17393},
volume = {026},
year = {1985},
}

TY - JOUR
AU - Morales, Claudio H.
TI - Surjectivity theorems for multi-valued mappings of accretive type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1985
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 026
IS - 2
SP - 397
EP - 413
LA - eng
KW - multivalued version of Deimling's domain invariance theorem; fixed; point property; surjectivity; expansive m-accretive multivalued maps acting on a subset of a; Banach space with uniformly convex dual; expansive m- accretive multivalued maps acting on a subset of a Banach space with uniformly convex dual
UR - http://eudml.org/doc/17393
ER -

References

top
  1. N. A. Assad W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. of Math. 43 (1972), 553-562. (1972) MR0341459
  2. F. E. Browder, Normal solarability and φ -accretive mappings of Banach spaces, Bull. Amer. Math. Soc, 78 (1972), 186-192. (1972) MR0306992
  3. F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach space, Bull. Amer. Math. Soc. 73 (1967), 875-881. (1967) MR0232255
  4. F. E. Brovder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math. vol. 18, pt. 2, Amer. Math. Soc, Providence, RI, 1976. (1976) MR0405188
  5. M. Crandall A. Pazy, On the range of accretive operators, Israel J. Math. 27 (1977), 235-246. (1977) MR0442763
  6. K. Deimling, Zeros of accretive operators, Manuscripts Math, 13 (1974), 365-375. (1974) Zbl0288.47047MR0350538
  7. A. G. Kartsatos, Some mapping for accretive operators in Banach spaces, J. Math. Anal. Appl. 82 (1981), 169-183. (1981) MR0626747
  8. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. (1967) Zbl0163.38303MR0226230
  9. W. A. Kirk, Local expansions and accretive mappings, accepted. Zbl0534.47032
  10. W. A. Kirk R. Schöneberg, Some results on pseudo-contractive mappings, Pacific J. Math. 71 (1977), 89-100. (1977) MR0487615
  11. W. A. Kirk R. Schöneberg, Zeros of m -accretive operators in Banach spaces, Israel J. Math. 35 (1980), 1-8. (1980) MR0576458
  12. R. H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414. (1973) Zbl0293.34092MR0318991
  13. C. Morales, Nonlinear equations involving m -accretive operators, J. Math. Anal. Appl. 97 (1983), 329-336. (1983) Zbl0542.47042MR0723235
  14. C. Morales, Zeros for strongly accretive set-valued mappings, submitted. Zbl0634.47048
  15. William O. Ray, Anita M. Walker, Mapping theorems for Gateaux differentiable and accretive operators, Nonlinear Analysis, 6 (1982), 423-433. (1982) MR0661709
  16. R. Schöneberg, On the domain invariance theorem for accretive mappings, J. London Math. Soc. 24 (1981), 548-554. (1981) MR0635886

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.