Page 1 Next

Displaying 1 – 20 of 119

Showing per page

A geometric approach to accretivity

Leonid V. Kovalev (2007)

Studia Mathematica

We establish a connection between generalized accretive operators introduced by F. E. Browder and the theory of quasisymmetric mappings in Banach spaces pioneered by J. Väisälä. The interplay of the two fields allows for geometric proofs of continuity, differentiability, and surjectivity of generalized accretive operators.

A parabolic quasilinear problem for linear growth functionals.

Fuensanta Andreu, Vincent Caselles, José María Mazón (2002)

Revista Matemática Iberoamericana

We prove existence and uniqueness of solutions for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth.

A Random Evolution Inclusion of Subdifferential Type in Hilbert Spaces

Kravvaritis, D., Pantelidis, G. (1996)

Serdica Mathematical Journal

In this paper we study a nonlinear evolution inclusion of subdifferential type in Hilbert spaces. The perturbation term is Hausdorff continuous in the state variable and has closed but not necessarily convex values. Our result is a stochastic generalization of an existence theorem proved by Kravvaritis and Papageorgiou in [6].

A result on segmenting Jungck–Mann iterates

Memudu Olaposi Olatinwo (2008)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, following the concepts in [5, 7], we shall establish a convergence result in a uniformly convex Banach space using the Jungck–Mann iteration process introduced by Singh et al [13] and a certain general contractive condition. The authors of [13] established various stability results for a pair of nonself-mappings for both Jungck and Jungck–Mann iteration processes. Our result is a generalization and extension of that of [7] and its corollaries. It is also an improvement on the result...

A strongly degenerate quasilinear equation : the elliptic case

Fuensanta Andreu, Vicent Caselles, José Mazón (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation u - div 𝐚 ( u , D u ) = v , where v L 1 , 𝐚 ( z , ξ ) = ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ξ , satisfying other additional assumptions. In particular, this class includes the case where f ( z , ξ ) = ϕ ( z ) ψ ( ξ ) , ϕ > 0 , ψ being a convex function with linear growth as ξ . In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the...

Abstract inclusions in Banach spaces with boundary conditions of periodic type

Lahcene Guedda, Ahmed Hallouz (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study in the space of continuous functions defined on [0,T] with values in a real Banach space E the periodic boundary value problem for abstract inclusions of the form ⎧ x S ( x ( 0 ) , s e l F ( x ) ) ⎨ ⎩ x (T) = x(0), where, F : [ 0 , T ] × 2 E is a multivalued map with convex compact values, ⊂ E, s e l F is the superposition operator generated by F, and S: × L¹([0,T];E) → C([0,T]; ) an abstract operator. As an application, some results are given to the periodic boundary value problem for nonlinear differential inclusions governed by m-accretive...

Currently displaying 1 – 20 of 119

Page 1 Next