On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball

Patrick Oswald

Commentationes Mathematicae Universitatis Carolinae (1985)

  • Volume: 026, Issue: 3, page 565-577
  • ISSN: 0010-2628

How to cite

top

Oswald, Patrick. "On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball." Commentationes Mathematicae Universitatis Carolinae 026.3 (1985): 565-577. <http://eudml.org/doc/17405>.

@article{Oswald1985,
author = {Oswald, Patrick},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {positive radial symmetric; homogeneous Dirichlet problem; semilinear biharmonic equation; a priori; existence},
language = {eng},
number = {3},
pages = {565-577},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball},
url = {http://eudml.org/doc/17405},
volume = {026},
year = {1985},
}

TY - JOUR
AU - Oswald, Patrick
TI - On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1985
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 026
IS - 3
SP - 565
EP - 577
LA - eng
KW - positive radial symmetric; homogeneous Dirichlet problem; semilinear biharmonic equation; a priori; existence
UR - http://eudml.org/doc/17405
ER -

References

top
  1. D. G. de FIGUEIREDO P.-L. LIONS R. D. NUSSBAUM, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math, pures et appl. 61 (1982), 41-63. (1982) MR0664341
  2. R. E. L. TURNER, A priori bounds for positive solutions ot nonlinear elliptic equations in two variables, Duke Math. J. 41 (1974), 759-774. (1974) MR0364859
  3. R. NUSSBAUM, Positive solutions of some nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 51 (1975), 461-482. (1975) MR0382850
  4. H. BREZIS R. E. L. TURNER, On a class of superlinear elliptic problems, Comm. in P.D.E. 2 (1977), 601-614. (1977) MR0509489
  5. S. I. POHOZAEV, Eigenfunctions of the equation Δ u + λ · f ( u ) = 0 , Soviet Math. Dokl. 6 (1965), 1408-1411. (1965) MR0192184
  6. B. GIDAS W.-M. NI L. NIRENBERG, Symmetric and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. (1979) MR0544879
  7. M. PROTTER H. WEINBERGER, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967. (1967) MR0219861

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.