Non-constant continuous maps of modifications of topological spaces

Věra Trnková; Miroslav Hušek

Commentationes Mathematicae Universitatis Carolinae (1988)

  • Volume: 029, Issue: 4, page 747-765
  • ISSN: 0010-2628

How to cite

top

Trnková, Věra, and Hušek, Miroslav. "Non-constant continuous maps of modifications of topological spaces." Commentationes Mathematicae Universitatis Carolinae 029.4 (1988): 747-765. <http://eudml.org/doc/17689>.

@article{Trnková1988,
author = {Trnková, Věra, Hušek, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {monoid of all continuous selfmaps of a topological space; family of all ncc (nonconstant continuous) selfmaps; ncc uniformly continuous selfmaps; ncc nonexpanding selfmaps; completely regular modification},
language = {eng},
number = {4},
pages = {747-765},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-constant continuous maps of modifications of topological spaces},
url = {http://eudml.org/doc/17689},
volume = {029},
year = {1988},
}

TY - JOUR
AU - Trnková, Věra
AU - Hušek, Miroslav
TI - Non-constant continuous maps of modifications of topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1988
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 029
IS - 4
SP - 747
EP - 765
LA - eng
KW - monoid of all continuous selfmaps of a topological space; family of all ncc (nonconstant continuous) selfmaps; ncc uniformly continuous selfmaps; ncc nonexpanding selfmaps; completely regular modification
UR - http://eudml.org/doc/17689
ER -

References

top
  1. E. ČECH, Topological Spaces, Revised by Z. Frolík and M. Katětov, Academia, Prague 1966. (1966) MR0211373
  2. H. COOK, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241-249. (1967) Zbl0158.41503MR0220249
  3. R. ENGELKING, General Topology, Warszawa 1977. (1977) Zbl0373.54002MR0500780
  4. J. de GROOT, Groups represented by homeomorphism groups, Math. Annalen 138 (1959), 80-102. (1959) Zbl0087.37802MR0119193
  5. Z. HEDRLÍN., Non-constant continuous transformations form any semigroup with a unity, Nieuw Archief voor Wiskunde XIV (1966), 230-236. (1966) Zbl0147.22602MR0209373
  6. H. HERRLICH, Topologische Reflexionen und Coreflexionen, Lect. Notes Math. 78, Springer-Verlag, Berlin - Heidelberg - New York, 1968. (1968) Zbl0182.25302MR0256332
  7. V. KANNAN M. RAJAG0PALAN, Constructions and applications of rigid spaces II, Amer. J. Math. 100 (1979), 1139-1172. (1979) MR0522694
  8. C. KURATOWSKI, Topologie I, II, Monografie Matematyczne, Warsaw 1950. (1950) 
  9. A. PULTR V. TRNKOVÁ, Combinatorial, algebraic and topological representation of groups, semigroups and categories, North Holland Publ., 1980. (1980) Zbl0418.18004MR0563525
  10. V. TRNKOVÁ, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolinae 13 (1972), 283-295. (1972) Zbl0245.54040MR0303486
  11. V. TRNKOVÁ, Simultaneous representation in discrete structures, Comment. Math. Univ. Carolinae 27 (1986), 633-649. (1986) Zbl0645.05041MR0874657
  12. V. TRNKOVÁ, Simultaneous representations by metric spaces, to appear in Cahiers Topo. et Geom. Diff. Zbl0684.54026MR0975374
  13. V. TRNKOVÁ, Nonconstant continuous maps of spaces and of their β -compactifications, to appear in Topology and its Appl. Zbl0681.54005MR1020982

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.