Oscillatory properties of second order linear differential equations in the complex domain

Martin Čadek

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 1, page 17-21
  • ISSN: 0010-2628

How to cite

top

Čadek, Martin. "Oscillatory properties of second order linear differential equations in the complex domain." Commentationes Mathematicae Universitatis Carolinae 030.1 (1989): 17-21. <http://eudml.org/doc/17693>.

@article{Čadek1989,
author = {Čadek, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Schwarzian derivative; Riemannian surface; second order ordinary linear differential equations; oscillatory properties},
language = {eng},
number = {1},
pages = {17-21},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Oscillatory properties of second order linear differential equations in the complex domain},
url = {http://eudml.org/doc/17693},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Čadek, Martin
TI - Oscillatory properties of second order linear differential equations in the complex domain
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 1
SP - 17
EP - 21
LA - eng
KW - Schwarzian derivative; Riemannian surface; second order ordinary linear differential equations; oscillatory properties
UR - http://eudml.org/doc/17693
ER -

References

top
  1. Borůvka O., Linear differential transformations of the second order, The English Univ. Press, London (1971). (1971) Zbl0222.34002MR0463539
  2. Beesack P. R., Nonoscillation and disconjugacy m the complex domain, Trans. Amer. Math. Soc. 81 (1956), 211-242. (1956) Zbl0075.26702MR0082009
  3. Forster O., Riemannsche Flachen, Heidelberger Taschenbucher Band 184, Springer Verlag, 1977. (1977) MR0447557
  4. Hille E., Lectures on ordinary differential equations, Adison-Wesley series in Mathematics (1969). (1969) Zbl0179.40301MR0361230
  5. Nehari Z., The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. (1949) Zbl0035.05104MR0029999
  6. Nehari Z., Univalent functions and linear differential equations, Lectures on functions of a complex variable, Univ. of Michigan Press, Ann Arbor (1955), 148-151. (1955) Zbl0066.32602MR0069874
  7. Nehari Z., Univalence criteria depending on the Schwarzian derivative, Illinois J. Math. 23 (1979), 345-351. (1979) Zbl0412.30012MR0537795
  8. Schwarz B., Univalence criteria of Nehari, Illinois J. Math. 27 (1983), 346-351. (1983) Zbl0511.30016MR0694648
  9. Šeda V., On the properties of linear differential equations of the second order in the complex domain, Proceedings of the Conference Equadiff, Prague (1962). (1962) MR0174816
  10. Stoilow S., Leçons sur les principes topologiques de la théorie des fonctions analytiques, 2nd edition, Gauthier-Villars, Paris (1956). (1956) Zbl0072.07604MR0082545

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.