Borel classes in AST. Measurability, cuts and equivalence

Martin Kalina; Pavol Zlatoš

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 2, page 357-372
  • ISSN: 0010-2628

How to cite

top

Kalina, Martin, and Zlatoš, Pavol. "Borel classes in AST. Measurability, cuts and equivalence." Commentationes Mathematicae Universitatis Carolinae 030.2 (1989): 357-372. <http://eudml.org/doc/17746>.

@article{Kalina1989,
author = {Kalina, Martin, Zlatoš, Pavol},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {measure; real class; lower cut; upper cut; Borel equivalence; Borel cardinal; Borel classes; alternative set theory; Cantor-Bernstein theorem},
language = {eng},
number = {2},
pages = {357-372},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Borel classes in AST. Measurability, cuts and equivalence},
url = {http://eudml.org/doc/17746},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Kalina, Martin
AU - Zlatoš, Pavol
TI - Borel classes in AST. Measurability, cuts and equivalence
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 2
SP - 357
EP - 372
LA - eng
KW - measure; real class; lower cut; upper cut; Borel equivalence; Borel cardinal; Borel classes; alternative set theory; Cantor-Bernstein theorem
UR - http://eudml.org/doc/17746
ER -

References

top
  1. Čuda K., The consistency of measurability of projective semisets, Comment. Math. Univ. Carolinae 27 (1986), 103-121. (1986) MR0843424
  2. Čuda K., [unknown], private correspondence. 
  3. Čuda K., Kussová B., Basic equivalence in the Alternative set theory, Comment. Math. Univ. Carolinae 23 (1982), 629-644. (1982) MR0687559
  4. Čuda K., Vopěnka P., Real and imaginary classes in the Alternative set theory, Comment. Math. Univ. Carolinae 20 (1979), 639-653. (1979) MR0555180
  5. Guričan J., Zlatoš P., Biequivalence and topology in the Alternative set theory, Comment. Math. Univ. Carolinae 26 (1985), 525-552. (1985) MR0817825
  6. Guričan J., Zlatoš P., Archimedean and geodotical biequivalences, Comment. Math. Univ. Carolinae 26 (1985), 675-698. (1985) MR0831804
  7. Henson C. W., Descriptive set theory on hyperflnite sets, lecture at the Conference Anwendungen der Infinitesimalmathematik, Oberwolfach, 1987. (1987) 
  8. Henson C. W., Ross D., [unknown], oral commucation, 1987. (1987) 
  9. Kalina M., A sequential approach to a construction of measures, Comment. Math. Univ. Carolinae 30 (1989), 121-128. (1989) Zbl0672.28007MR0995710
  10. Kalina M., Zlatoš P., Arithmetics of cuts and cuts of classes, Comment. Math. Univ. Carolinae 29 (1988), 435-456. (1988) MR0972828
  11. Kalina M., Zlatoš P., Cuts of real classes, Comment. Math. Univ. Carolinae 30 (1989), 129-136. (1989) MR0995711
  12. Loeb P., Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122. (1975) Zbl0312.28004MR0390154
  13. Raškovič M., Measure and integration in the Alternative set theory, Publications de l'Inst. Math. 29 (1981), 191-197. (1981) MR0657107
  14. Sochor A., Vencovská A., Indiscernibles in the Alternative set theory, Comment. Math. Univ. Carolinae 22 (1981), 785-798. (1981) MR0647026
  15. Sochor A., Vopěnka P., Revealments, Comment. Math. Univ. Carolinae 21 (1980), 97-118. (1980) MR0566243
  16. Tzouvaras A., A notion of measures for classes in AST, Comment. Math. Univ. Carolinae 28 (1987), 449-455. (1987) MR0912575
  17. Vopěnka P., Mathematics in the Alternative Set Theory, Teubner, Leipzig 1979; Russian translation Mir, Moscow 1983. (1979) MR0718490

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.