Non-convex perturbations of evolution equations with m -dissipative operators in Banach spaces

Evgenios P. Avgerinos; Nikolaos S. Papageorgiou

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 4, page 657-664
  • ISSN: 0010-2628

How to cite

top

Avgerinos, Evgenios P., and Papageorgiou, Nikolaos S.. "Non-convex perturbations of evolution equations with $m$-dissipative operators in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 030.4 (1989): 657-664. <http://eudml.org/doc/17777>.

@article{Avgerinos1989,
author = {Avgerinos, Evgenios P., Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {m-dissipative operator; compact semigroup; lower semicontinuous multifunction; Arzela-Ascoli theory; parabolic equation; integral solutions for a nonlinear, multivalued evolution equation},
language = {eng},
number = {4},
pages = {657-664},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-convex perturbations of evolution equations with $m$-dissipative operators in Banach spaces},
url = {http://eudml.org/doc/17777},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Avgerinos, Evgenios P.
AU - Papageorgiou, Nikolaos S.
TI - Non-convex perturbations of evolution equations with $m$-dissipative operators in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 4
SP - 657
EP - 664
LA - eng
KW - m-dissipative operator; compact semigroup; lower semicontinuous multifunction; Arzela-Ascoli theory; parabolic equation; integral solutions for a nonlinear, multivalued evolution equation
UR - http://eudml.org/doc/17777
ER -

References

top
  1. H. Attouch A. Damlamian, On multivalued evolution equations in Hilbert spaces, Israel J. Math. 12 (1972), 373-390. (1972) MR0346609
  2. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, Netherlands 1976. (1976) Zbl0328.47035MR0390843
  3. Ph. Benilan, Solutions integrates d' equations d' evolution dans un espace de Banach, C.R. Acad. Sc. Paris 274 (1972), 47-50. (1972) MR0300164
  4. H. Brezis, Operateurs Maximaux Monotones, Math. Studies, Vol. 50, North Holland, Amsterdam 1972. (1972) 
  5. H. Brezis, New results concerning monotone operators and nonlinear semigroups, Analysis of Nonlinear Problems, RIMS Kyoto Univ. 258 (1974), 2-27. (1974) MR0493537
  6. A. Cellina M. Marchi, Nonconvex perturbations of maximal monotone inclusions, Israel J. Math. 46 (1983), 1-11. (1983) MR0727019
  7. A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174. (1983) MR0730018
  8. S. Gutman, Evolutions governed by m-accrctive plus compact operators, Nonl. Anal. - T.M.A. 7 (1983), 707-715. (1983) MR0707079
  9. A. Haraux, Nonlinear Evolution Equations: Global Behavior of Solutions, Lecture Notes in Math. 841, Springer, Berlin 1981. (1981) Zbl0461.35002MR0610796
  10. N. S. Papageorgiou, On measurable multifunciions with applications to random multivalued equations, Math. Japonica 32 (1987), 437-464. (1987) MR0914749
  11. N. S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions, Intern. J. Math, and Math. Sci 10 (1987), 433-442. (1987) Zbl0619.28009MR0896595
  12. A. Pazy, A class of semilinear equations of evolution, Israel J. Math. 20 (1975), 23-36. (1975) 
  13. E. Schechter, Perturbations of regularizing maximal monotone operators, Israel J. Math. 43 (1982), 49-61; and correction, 47 (1984), 236-240. (1982) Zbl0516.34060MR0728878
  14. I. Vrabie, A nonlinear version of Pazy's local existence theorem, Israel J. Math. 32 (1979), 221-235. (1979) MR0531265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.