On nonlinear, nonconvex evolution inclusions

Nikolaos S. Papageorgiou

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1995)

  • Volume: 15, Issue: 1, page 29-42
  • ISSN: 1509-9407

Abstract

top
We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, G δ -subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.

How to cite

top

Nikolaos S. Papageorgiou. "On nonlinear, nonconvex evolution inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 15.1 (1995): 29-42. <http://eudml.org/doc/275925>.

@article{NikolaosS1995,
abstract = {We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, $G_δ$-subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.},
author = {Nikolaos S. Papageorgiou},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {m-accretive operator; integral solution; nonlinear semigroup; extremal solution; strong relaxation theorem; parabolic system; bang-bang type theorems; extremal integral solution; nonlinear evolution inclusion; equicontinuous nonlinear semigroup; multivalued Cauchy problems; nonlinear parabolic distributed parameter control systems},
language = {eng},
number = {1},
pages = {29-42},
title = {On nonlinear, nonconvex evolution inclusions},
url = {http://eudml.org/doc/275925},
volume = {15},
year = {1995},
}

TY - JOUR
AU - Nikolaos S. Papageorgiou
TI - On nonlinear, nonconvex evolution inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1995
VL - 15
IS - 1
SP - 29
EP - 42
AB - We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, $G_δ$-subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.
LA - eng
KW - m-accretive operator; integral solution; nonlinear semigroup; extremal solution; strong relaxation theorem; parabolic system; bang-bang type theorems; extremal integral solution; nonlinear evolution inclusion; equicontinuous nonlinear semigroup; multivalued Cauchy problems; nonlinear parabolic distributed parameter control systems
UR - http://eudml.org/doc/275925
ER -

References

top
  1. [1] E. Avgerinos, N. S. Papageorgiou, Nonconvex perturbations of evolution equations with m-dissipative operators in Banach spaces, Comment. Math. Univ. Carol. 30 (1989), 657-664. Zbl0715.47040
  2. [2] E. Balder, Necessary and sufficient conditions for L₁-strong-weak lower semicontinuity of integral functionals, Nonlin. Anal.-TMA 11 (1987), 1399-1404. Zbl0638.49004
  3. [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Intern. Publishing, Leyden, The Netherlands 1976. Zbl0328.47035
  4. [4] M. Benamara, Points Extrémaux, Multi-applications et Fonctionelles Intégrales, These du 3eme Cycle, Université de Grenoble, France 1975. 
  5. [5] Ph. Benilan, Equations d'Evolution dans un Espace de Banach Quelconque et Applications, These, Université de Paris XI, Orsay 1972. 
  6. [6] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam 1973. Zbl0252.47055
  7. [7] H. Brezis, Problemes unilateraux, J. Math. Pures et Appl. 51 (1972), 1-164. Zbl0237.35001
  8. [8] F. S. DeBlasi, G. Pianigiani, Nonconvex valued differential inclusions in Banach spaces, J. Math. Anal. Appl. 157 (1991), 469-494. Zbl0728.34013
  9. [9] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 78 (1983), 163-174. Zbl0534.28003
  10. [10] S. Gutman, Topological equivalence in the space of integrable vector-valued functions, Proc. Amer. Math. Soc. 93 (1985), 40-42. Zbl0529.46027
  11. [11] S. Gutman, Evolutions governed by m-accretive plus compact operators, Nonl. Anal.-TMA 7 (1983), 707-715. Zbl0518.34055
  12. [12] V. Lakshmikantham, S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, London 1981. Zbl0456.34002
  13. [13] E. Mitidieri, I. Vrabie, Differential inclusions governed by nonconvex perturbations of m-accretive operators, Differ. and Int. Equations 2 (1989), 525-531. Zbl0736.34014
  14. [14] G. Pianigiani, Differential inclusions: The Baire category method, Proc. CIME, Varenna, ed. by A. Cellina, Lecture Notes in Math. No. 1446, Springer-Verlag, Berlin 1990. Zbl0719.34033
  15. [15] A. Tolstonogov, Extreme continuous selectors of multivalued maps and their applications, Preprint SISSA 72M (June, 1991), Trieste, Italy. (Also Soviet Math. Doklady 43 (2) (1991), 481-485). Zbl0784.54024
  16. [16] D. Wagner, Survey of measurable selection theorems, SIAM J. Control. Optim. 15 (1977), 859-903. Zbl0407.28006
  17. [17] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. Zbl0684.47029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.