On nonlinear, nonconvex evolution inclusions
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1995)
- Volume: 15, Issue: 1, page 29-42
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topNikolaos S. Papageorgiou. "On nonlinear, nonconvex evolution inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 15.1 (1995): 29-42. <http://eudml.org/doc/275925>.
@article{NikolaosS1995,
abstract = {We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, $G_δ$-subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.},
author = {Nikolaos S. Papageorgiou},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {m-accretive operator; integral solution; nonlinear semigroup; extremal solution; strong relaxation theorem; parabolic system; bang-bang type theorems; extremal integral solution; nonlinear evolution inclusion; equicontinuous nonlinear semigroup; multivalued Cauchy problems; nonlinear parabolic distributed parameter control systems},
language = {eng},
number = {1},
pages = {29-42},
title = {On nonlinear, nonconvex evolution inclusions},
url = {http://eudml.org/doc/275925},
volume = {15},
year = {1995},
}
TY - JOUR
AU - Nikolaos S. Papageorgiou
TI - On nonlinear, nonconvex evolution inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1995
VL - 15
IS - 1
SP - 29
EP - 42
AB - We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, $G_δ$-subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.
LA - eng
KW - m-accretive operator; integral solution; nonlinear semigroup; extremal solution; strong relaxation theorem; parabolic system; bang-bang type theorems; extremal integral solution; nonlinear evolution inclusion; equicontinuous nonlinear semigroup; multivalued Cauchy problems; nonlinear parabolic distributed parameter control systems
UR - http://eudml.org/doc/275925
ER -
References
top- [1] E. Avgerinos, N. S. Papageorgiou, Nonconvex perturbations of evolution equations with m-dissipative operators in Banach spaces, Comment. Math. Univ. Carol. 30 (1989), 657-664. Zbl0715.47040
- [2] E. Balder, Necessary and sufficient conditions for L₁-strong-weak lower semicontinuity of integral functionals, Nonlin. Anal.-TMA 11 (1987), 1399-1404. Zbl0638.49004
- [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Intern. Publishing, Leyden, The Netherlands 1976. Zbl0328.47035
- [4] M. Benamara, Points Extrémaux, Multi-applications et Fonctionelles Intégrales, These du 3eme Cycle, Université de Grenoble, France 1975.
- [5] Ph. Benilan, Equations d'Evolution dans un Espace de Banach Quelconque et Applications, These, Université de Paris XI, Orsay 1972.
- [6] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam 1973. Zbl0252.47055
- [7] H. Brezis, Problemes unilateraux, J. Math. Pures et Appl. 51 (1972), 1-164. Zbl0237.35001
- [8] F. S. DeBlasi, G. Pianigiani, Nonconvex valued differential inclusions in Banach spaces, J. Math. Anal. Appl. 157 (1991), 469-494. Zbl0728.34013
- [9] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 78 (1983), 163-174. Zbl0534.28003
- [10] S. Gutman, Topological equivalence in the space of integrable vector-valued functions, Proc. Amer. Math. Soc. 93 (1985), 40-42. Zbl0529.46027
- [11] S. Gutman, Evolutions governed by m-accretive plus compact operators, Nonl. Anal.-TMA 7 (1983), 707-715. Zbl0518.34055
- [12] V. Lakshmikantham, S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, London 1981. Zbl0456.34002
- [13] E. Mitidieri, I. Vrabie, Differential inclusions governed by nonconvex perturbations of m-accretive operators, Differ. and Int. Equations 2 (1989), 525-531. Zbl0736.34014
- [14] G. Pianigiani, Differential inclusions: The Baire category method, Proc. CIME, Varenna, ed. by A. Cellina, Lecture Notes in Math. No. 1446, Springer-Verlag, Berlin 1990. Zbl0719.34033
- [15] A. Tolstonogov, Extreme continuous selectors of multivalued maps and their applications, Preprint SISSA 72M (June, 1991), Trieste, Italy. (Also Soviet Math. Doklady 43 (2) (1991), 481-485). Zbl0784.54024
- [16] D. Wagner, Survey of measurable selection theorems, SIAM J. Control. Optim. 15 (1977), 859-903. Zbl0407.28006
- [17] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. Zbl0684.47029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.