Finite-to-finite universal varieties of distributive double p -algebras

Václav Koubek

Commentationes Mathematicae Universitatis Carolinae (1990)

  • Volume: 031, Issue: 1, page 67-83
  • ISSN: 0010-2628

How to cite

top

Koubek, Václav. "Finite-to-finite universal varieties of distributive double $p$-algebras." Commentationes Mathematicae Universitatis Carolinae 031.1 (1990): 67-83. <http://eudml.org/doc/17809>.

@article{Koubek1990,
author = {Koubek, Václav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal category; finite-to-finite universal variety; double p-algebras},
language = {eng},
number = {1},
pages = {67-83},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Finite-to-finite universal varieties of distributive double $p$-algebras},
url = {http://eudml.org/doc/17809},
volume = {031},
year = {1990},
}

TY - JOUR
AU - Koubek, Václav
TI - Finite-to-finite universal varieties of distributive double $p$-algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 1
SP - 67
EP - 83
LA - eng
KW - universal category; finite-to-finite universal variety; double p-algebras
UR - http://eudml.org/doc/17809
ER -

References

top
  1. M. E. Adams V. Koubek J. Sichler, Homomorphisms and endomorphisms of distributive lattices, Houston J. Math. 11 (1985), 129-146. (1985) MR0792189
  2. M. E. Adams J. Sichler, Endomorphism monoids of distributive double p-algebras, Glasgow Math. J. 20 (1979), 81-86. (1979) MR0523792
  3. R. Beazer, The determination congruence on double p-algebras, Alg. Universalis 6 (1976), 121-129. (1976) Zbl0353.06002MR0419319
  4. B. A. Davey, Subdirectly irreducible distributive double p-algebras, Alg. Universalis 8 (1978), 73-88. (1978) Zbl0381.06019MR0450160
  5. B. A. Davey D. Duffus, Exponentiation and duality, Ordered Sets, NATO Advanced Study Institutes Series 83, D. Reidel Publishing Company, Dordrecht, Holland, 1982. (1982) MR0661291
  6. P. Goralčík V. Koubek J. Sichler, Universal varieties of ( 0 , 1 ) -lattices, to appear in Canad. Math. J. MR1062740
  7. G. Grätzer, General Lattice Theory, Academic Press, New York, San Francisco, 1978. (1978) MR0509213
  8. B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121. (1967) MR0237402
  9. V. Koubek, Infinite image homomorphisms of distributive bounded lattices, in proc. Colloquia Math. Soc. János Bolayi, 43. Lectures in Universal Algebra, Szeged 1983, North Holland 1985. (1983) MR0860268
  10. V. Koubek J. Sichler, Universal varieties of distributive double p -algebras, Glasgow Math. J. 20 (1985), 121-131. (1985) MR0798738
  11. V. Koubek J. Sichler, Categorical universality of regular double p -algebras, to appear in Glasgow Math. J. MR1073673
  12. V. Koubek J. Sichler, Universal finitely generated varieties of distributive double p-algebras 
  13. H. A. Priestley, Representation of distributive lattices by means of order Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. (1970) MR0265242
  14. H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507-530. (1972) Zbl0323.06011MR0300949
  15. H. A. Priestley, The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Math. Oxford 26 (1975), 215-228. (1975) Zbl0323.06013MR0392731
  16. H. A. Priestley, Ordered sets and duality for distributive lattices, Ann Discrete Math. 23 (1984), 36-90. (1984) Zbl0557.06007MR0779844
  17. A. Pultr V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam, 1980. (1980) MR0563525

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.