### A category theoretical background for homomorphism theorems

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We establish categorical dualities between varieties of isotropic median algebras and suitable categories of operational and relational topological structures. We follow a general duality theory of B.A. Davey and H. Werner. The duality results are used to describe free isotropic median algebras. If the number of free generators is less than five, the description is detailed.

The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a dhts-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities ox ≈ o and xo ≈ o, where o and i are the elements selected by the 0-ary operation symbols. If the object class of a dhts-category...

In spite of increasing studies and investigations in the field of aggregation operators, there are two fundamental problems remaining unsolved: aggregation of $L$-fuzzy set-theoretic notions and their justification. In order to solve these problems, we will formulate aggregation operators and their special types on partially ordered sets with universal bounds, and introduce their categories. Furthermore, we will show that there exists a strong connection between the category of aggregation operators...

It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.