Higher monotonicity properties of special functions: application on Bessel case | ν | < 1 2

Zuzana Došlá

Commentationes Mathematicae Universitatis Carolinae (1990)

  • Volume: 031, Issue: 2, page 233-241
  • ISSN: 0010-2628

How to cite

top

Došlá, Zuzana. "Higher monotonicity properties of special functions: application on Bessel case $|\nu | < \frac{1}{2}$." Commentationes Mathematicae Universitatis Carolinae 031.2 (1990): 233-241. <http://eudml.org/doc/17841>.

@article{Došlá1990,
author = {Došlá, Zuzana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {higher monotonicity properties; ultimate monotonicity; Bessel functions},
language = {eng},
number = {2},
pages = {233-241},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Higher monotonicity properties of special functions: application on Bessel case $|\nu | < \frac\{1\}\{2\}$},
url = {http://eudml.org/doc/17841},
volume = {031},
year = {1990},
}

TY - JOUR
AU - Došlá, Zuzana
TI - Higher monotonicity properties of special functions: application on Bessel case $|\nu | < \frac{1}{2}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 2
SP - 233
EP - 241
LA - eng
KW - higher monotonicity properties; ultimate monotonicity; Bessel functions
UR - http://eudml.org/doc/17841
ER -

References

top
  1. P. Hartman, On differential equations and the function J μ 2 + Y μ 2 , Amer. J. Math 83 (1961), 154-188. (1961) Zbl0096.27001MR0123039
  2. P. Hartman, On differential equations, Volterra equations and the functions J μ 2 + Y μ 2 , Amer. J. Math 95 (1973), 552-593. (1973) MR0333308
  3. L. Lorch D. J. Neuman, On the composition of completely monotonic functions and completely monotonic sequences and related questions, J. London Math. Soc. (2), 28 (1983), 31-45. (1983) MR0703462
  4. L. Lorch P. Szego, Monotonicity of the differences of zeros of Bessel functions as a function of order, Proc. Amer. Math. Soc. 15 (1964), 91-96. (1964) MR0158106
  5. L. Lorch P. Szego, Higher monotonicity properties of certain Sturm-Liouville functions, Acta Math. 109 (1963), 55-73. (1963) MR0147695
  6. L. Lorch M. E. Muldoon P. Szego, Higher monotonicity properties of certain Sturm-Liouville functions, III., Canad. J. Math. 22 (1970), 1238-1265. (1970) MR0274845
  7. L. Lorch M. E. Muldoon P. Szego, Higher monotonicity properties of certain Sturm-Liouville functions, IV., Canad. J. Math. 24 (1972), 349-368. (1972) MR0298113
  8. M. E. Muldoon, Higher monotonicity properties of certain Sturm-Liouville functions, Proceedings of the Royal Society of Edinburgh 77A (1977), 23-37. (1977) Zbl0361.34027MR0445033
  9. J. Vosmanský, Monotonic properties of zeros and extremants of the differential equation y " + q ( t ) y = 0 , Arch. Match. (Brno) 6 (1970), 37-74. (1970) MR0296420
  10. J. Vosmanský, Certain higher monotonicity properties of i-th derivatives of solutions of y " + a ( t ) y ' + b ( t ) y = 0 , Arch. Math. (Brno) 10 (1974), 87-102. (1974) MR0399578
  11. D. V. Widder, The Laplace Transform, Princeton Univ. Press 1941. (1941) Zbl0063.08245MR0005923
  12. Z. Došlá M. Háčik M. E. Muldoon, Further higher monotonicity properties of Sturm-Liouville functions, to appear. MR1242631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.