Invariance principles in L 2 [ 0 , 1 ]

Paulo Eduardo Oliveira

Commentationes Mathematicae Universitatis Carolinae (1990)

  • Volume: 031, Issue: 2, page 357-366
  • ISSN: 0010-2628

How to cite

top

Oliveira, Paulo Eduardo. "Invariance principles in $L^2 [0,1]$." Commentationes Mathematicae Universitatis Carolinae 031.2 (1990): 357-366. <http://eudml.org/doc/17853>.

@article{Oliveira1990,
author = {Oliveira, Paulo Eduardo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weakly relatively compact; invariance principles; -mixing condition},
language = {eng},
number = {2},
pages = {357-366},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Invariance principles in $L^2 [0,1]$},
url = {http://eudml.org/doc/17853},
volume = {031},
year = {1990},
}

TY - JOUR
AU - Oliveira, Paulo Eduardo
TI - Invariance principles in $L^2 [0,1]$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1990
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 031
IS - 2
SP - 357
EP - 366
LA - eng
KW - weakly relatively compact; invariance principles; -mixing condition
UR - http://eudml.org/doc/17853
ER -

References

top
  1. Aronszajan N., The theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. (1950) MR0051437
  2. Berlinet A., Espaces autoreproduisants et mesure empirique., Méthodes splines en estimation fonctionnde, These de 3 - cycle, Lille, 1980. (1980) Zbl0436.60011
  3. Billingsley P., Convergence of Probability Measures, John Wiley & Sons, 1968. (1968) Zbl0172.21201MR0233396
  4. Herrndorf N., The invariance principle for ϕ -mixing sequences, no 1, Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. (1983) Zbl0494.60036MR0699789
  5. Herrndorf N., A functional central limit theorem for weakly dependent sequences of random variables, no 1, Ann. Probab. 12 (1984), 141-153. (1984) Zbl0536.60030MR0723735
  6. Hida T., Brownian Motion, Springer-Verlag, 1980. (1980) Zbl0432.60002MR0562914
  7. Ibragimov I. A., Some limit theorems for stationary processes, Theory Probab. Appl. 7 (1962), 349-382. (1962) Zbl0119.14204MR0148125
  8. Mason D., Weak convergence of the weighted empirical quantile process in L 2 [ 0 , 1 ] , no 1, Ann. Probab. 12 (1984), 243-255. (1984) Zbl0543.60010MR0723743
  9. Mori T., Yoshihara K. I., A note on the central limit theorem for the stationary strongmixing sequences, Yokohama Math. J. 34 (1986), 143-146. (1986) Zbl0633.60030MR0886062
  10. Parthasarathy K. R., Probability Measures on Metric Spaces, Academic Press, 1967. (1967) Zbl0153.19101MR0226684
  11. Peligrad M., An invariance principle for dependent random variables, no 4, Z. Wahrsch. verw. Gebiete 57 (1981), 495-507. (1981) Zbl0485.60032MR0631373
  12. Phillip W., The central limit problem for mixing sequences of random variables, Z. Wahrsch. verw. Gebiete 12 (1969), 155-171. (1969) MR0246356
  13. Suquet C., Espaces autoreproduisants et mesures aléatoires, Thése de 3- cycle, Lille, 1986. (1986) 
  14. Volný D., A central limit theorem for non stationary mixing processes, no 2, Comment. Math. Univ. Carolinae 30 (1989), 405-407. (1989) Zbl0685.60022MR1014142
  15. Withers C. S., Central limit theorems for dependent variables I, Z. Wahrsch. verw. Gebiete, 57 (1981), n°-4, 509-534; (1981) Zbl0451.60027MR0631374
  16. Withers C. S., Corrigendum to Central limit theorems for dependent variables I, Z. Wahrsch. verw. Gebiete, 63 (1983), 555. (1983) Zbl0513.60034MR0705626

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.