An invariance principle in for non stationary -mixing sequences
Paulo Eduardo Oliveira; Charles Suquet
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 2, page 293-302
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topOliveira, Paulo Eduardo, and Suquet, Charles. "An invariance principle in $L^2[0,1]$ for non stationary $\varphi $-mixing sequences." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 293-302. <http://eudml.org/doc/247758>.
@article{Oliveira1995,
abstract = {Invariance principle in $L^2(0,1)$ is studied using signed random measures. This approach to the problem uses an explicit isometry between $L^2(0,1)$ and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a $L^2(0,1)$ version of the invariance principle in the case of $\varphi $-mixing random variables. Our result is not available in the $D(0,1)$-setting.},
author = {Oliveira, Paulo Eduardo, Suquet, Charles},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {reproducing kernel Hilbert space; random measure; invariance principle; $\varphi $-mixing; invariance principle; -mixing; random measure; reproducing kernel Hilbert space},
language = {eng},
number = {2},
pages = {293-302},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An invariance principle in $L^2[0,1]$ for non stationary $\varphi $-mixing sequences},
url = {http://eudml.org/doc/247758},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Oliveira, Paulo Eduardo
AU - Suquet, Charles
TI - An invariance principle in $L^2[0,1]$ for non stationary $\varphi $-mixing sequences
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 293
EP - 302
AB - Invariance principle in $L^2(0,1)$ is studied using signed random measures. This approach to the problem uses an explicit isometry between $L^2(0,1)$ and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a $L^2(0,1)$ version of the invariance principle in the case of $\varphi $-mixing random variables. Our result is not available in the $D(0,1)$-setting.
LA - eng
KW - reproducing kernel Hilbert space; random measure; invariance principle; $\varphi $-mixing; invariance principle; -mixing; random measure; reproducing kernel Hilbert space
UR - http://eudml.org/doc/247758
ER -
References
top- Billingsley P., Convergence of probability measures, Wiley, 1968. Zbl0944.60003MR0233396
- Berlinet A., Espaces autoreproduisants et mesure empirique, méthodes splines en estimation fonctionnelle, Thèse 3 cycle, Lille, 1980.
- Davydov Y., Convergence of distributions generated by stationary stochastic processes, Theory Probab. Appl. 13 (1968), 691-696. (1968) Zbl0181.44101
- Guilbart C., Étude des produits scalaires sur l'espace des mesures. Estimation par projection. Tests à noyaux, Thèse d'Etat, Lille, 1978.
- Herrndorf N., The invariance principle for -mixing sequences, Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. (1983) MR0699789
- Ibragimov I.A., Some limit theorems for stationary processes, Theory Probability Appl. 7 (1962), 349-382. (1962) Zbl0119.14204MR0148125
- Jacob P., Private communication, .
- Oliveira P.E., Invariance principles in , Comment. Math. Univ. Carolinae 31:2 (1990), 357-366. (1990) MR1077906
- Parthasarathy K.R., Probability Measures on Metric Spaces, Academic Press, 1967. MR0226684
- Peligrad M., An invariance principle for -mixing sequences, Ann. Probab. 13 (1985), 1304-1313. (1985) MR0806227
- Philipp W., Invariance principles for independent and weakly dependent random variables, Dependence in probability and statistics (Oberwolfach, 1985), 225-268, Progr. Probab. Statist., 11, Birkhauser Boston, Boston, MA, 1986. Zbl0614.60027MR0899992
- Samur J.D., On the invariance principle for stationary -mixing triangular arrays with infinitely divisible limits, Probab. Th. Rel. Fields 75 (1987), 245-259. (1987) MR0885465
- Suquet Ch., Une topologie pré-hilbertienne sur l'espace des mesures à signe bornées, Pub. Inst. Stat. Univ. Paris XXXV (1990), 51-77. (1990) MR1745002
- Suquet Ch., Relecture des critères de relative compacité d'une famille de probabilités sur un espace de Hilbert, Pub. IRMA 28 (1992), III, Lille.
- Suquet Ch., Convergences stochastiques de suites de mesures aléatoires à signe considérées comme variables aléatoires hilbertiennes, Pub. Inst. Stat. Univ. Paris XXXVII 1-2 (1993), 71-99. (1993) MR1743969
- Utev S.A., On the central limit theorem for -mixing arrays of random variables, Theory Probab. Appl. 35:1 (1990), 131-139. (1990) MR1050059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.