# Direct finiteness of group rings - a simple proof of the Kaplansky's conjecture for finite groups

Commentationes Mathematicae Universitatis Carolinae (1990)

- Volume: 031, Issue: 3, page 427-429
- ISSN: 0010-2628

## Access Full Article

top## How to cite

topTrlifaj, Jan. "Direct finiteness of group rings - a simple proof of the Kaplansky's conjecture for finite groups." Commentationes Mathematicae Universitatis Carolinae 031.3 (1990): 427-429. <http://eudml.org/doc/17864>.

@article{Trlifaj1990,

author = {Trlifaj, Jan},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {subgroup; direct product of finite groups; group algebra},

language = {eng},

number = {3},

pages = {427-429},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Direct finiteness of group rings - a simple proof of the Kaplansky's conjecture for finite groups},

url = {http://eudml.org/doc/17864},

volume = {031},

year = {1990},

}

TY - JOUR

AU - Trlifaj, Jan

TI - Direct finiteness of group rings - a simple proof of the Kaplansky's conjecture for finite groups

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1990

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 031

IS - 3

SP - 427

EP - 429

LA - eng

KW - subgroup; direct product of finite groups; group algebra

UR - http://eudml.org/doc/17864

ER -

## References

top- K. R. Goodearl, Von Neumann regular rings, Pitman, London 1979. (1979) Zbl0411.16007MR0533669
- G. Losey, Are one-sided inverses two-sided inverses in a matrix ring over a group ring?, Canad. Math. Bull. 13 (4) (1970), 475-479. (1970) Zbl0209.05901MR0272822
- A. V. Mikhalev A. E. Zalesski, Group rings, Contemp. problems of math. 2 (1973), 5-118. (1973) MR0414623
- D. S. Passman, The algebraic structure of group rings, J. Wiley, New York 1977. (1977) Zbl0368.16003MR0470211

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.