A direct factor theorem for commutative group algebras
Suppose is a field of characteristic and is a -primary abelian -group. It is shown that is a direct factor of the group of units of the group algebra .
Suppose is a field of characteristic and is a -primary abelian -group. It is shown that is a direct factor of the group of units of the group algebra .
Suppose is a prime number and is a commutative ring with unity of characteristic 0 in which is not a unit. Assume that and are -primary abelian groups such that the respective group algebras and are -isomorphic. Under certain restrictions on the ideal structure of , it is shown that and are isomorphic.
Let be an associative ring with identity and let denote the Jacobson radical of . is said to be semilocal if is Artinian. In this paper we give necessary and sufficient conditions for the group ring , where is an abelian group, to be semilocal.
Suppose is a commutative ring with identity of prime characteristic and is an arbitrary abelian -group. In the present paper, a basic subgroup and a lower basic subgroup of the -component and of the factor-group of the unit group in the modular group algebra are established, in the case when is weakly perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed -component and of the quotient group are given when is perfect and is arbitrary whose is -divisible....
Let be a normed Sylow -subgroup in a group ring of an abelian group with -component and a -basic subgroup over a commutative unitary ring with prime characteristic . The first central result is that is basic in and is -basic in , and is basic in and is -basic in , provided in both cases is -divisible and is such that its maximal perfect subring has no nilpotents whenever is natural. The second major result is that is -basic in and is -basic in ,...
Suppose is a perfect field of and is an arbitrary abelian multiplicative group with a -basic subgroup and -component . Let be the group algebra with normed group of all units and its Sylow -subgroup , and let be the nilradical of the relative augmentation ideal of with respect to . The main results that motivate this article are that is basic in , and is -basic in provided is -mixed. These achievements extend in some way a result of N. Nachev (1996) in Houston...
A new class of abelian -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).