Reducibility theorems for differentiable liftings in fiber bundles

Demeter Krupka

Archivum Mathematicum (1979)

  • Volume: 015, Issue: 2, page 93-106
  • ISSN: 0044-8753

How to cite

top

Krupka, Demeter. "Reducibility theorems for differentiable liftings in fiber bundles." Archivum Mathematicum 015.2 (1979): 93-106. <http://eudml.org/doc/17996>.

@article{Krupka1979,
author = {Krupka, Demeter},
journal = {Archivum Mathematicum},
keywords = {liftings in fiber bundles; principal fiber bundles with structural group a Lie group; finite determinary of smooth lifts},
language = {eng},
number = {2},
pages = {93-106},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Reducibility theorems for differentiable liftings in fiber bundles},
url = {http://eudml.org/doc/17996},
volume = {015},
year = {1979},
}

TY - JOUR
AU - Krupka, Demeter
TI - Reducibility theorems for differentiable liftings in fiber bundles
JO - Archivum Mathematicum
PY - 1979
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 015
IS - 2
SP - 93
EP - 106
LA - eng
KW - liftings in fiber bundles; principal fiber bundles with structural group a Lie group; finite determinary of smooth lifts
UR - http://eudml.org/doc/17996
ER -

References

top
  1. G. W. Horndeski D. Lovelock, Scalar-tensor field theories, Tensor, 24 (1972), 79-92. (1972) Zbl0249.53008MR0327251
  2. D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966. (1966) Zbl0144.44804MR0229247
  3. Chuu-Lian Terng, Natural vector bundles and natural differential operators, A dissertation, Brandeis University, Massachusetts, 1976. (1976) Zbl0422.58001
  4. S. Kobayashi K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience, New York, 1963. (1963) Zbl0119.37502MR0152974
  5. D. Krupka, A setting for generally invariant Lagrangian structures in tensor bundles, Bull. Acad. Polon. Sci, Sér. Math. Astronom. Phys., 22 (1974), 967-972. (1974) Zbl0305.58002MR0410793
  6. D. Krupka, A theory of generally invariant Lagrangians for the metric fields. II., Intern. J. Theor. Phys. 15 (1976), 949-959; I., Intern. J. Theor. Phys. 17 (1978), 359-368 (1976) Zbl0407.58003MR0503475
  7. D. Krupka, Elementary theory of differential invariants, Arch. Math. (Brno), 14 (1978), 207-214 (1978) Zbl0428.58002MR0512763
  8. D. Krupka, Finite order liftings in principal fibre bundles, Beiträge zur Algebra und Geometrie (Halle), to appear. Zbl0503.55010MR0680453
  9. D. Krupka, Lagrangians and topology, Scripta Fac. Sci. Nat. UJEP Brunensis, Physica 3- 4 (1975), 265-270. (1975) MR0442929
  10. D. Krupka A. Trautman, General invariance of Lagrangian structures, Bull. Acad. Polon. Sci, Sér. Math. Astronom. Phys., 22 (1974), 207-211. (1974) Zbl0278.49044MR0345130
  11. A. Nijenhuis, Natural bundles and their general properties, Differential geometry, in honour of K. Yano, Kinokunyia, Tokyo, 1972, 317-334. (1972) Zbl0246.53018MR0380862
  12. H. Rund, Invariant theory of variational problems for geometric objects, Tensor, 18 (1967), 240-257. (1967) Zbl0152.39403MR0217668
  13. S. E. Salvioli, On the theory of geometric objects, J. Diff. Geometry 7 (1972), 257-278. (1972) Zbl0276.53013MR0320922
  14. R. Sulanke P. Wintgen, Differentialgeometrie und Faserbündel, Berlin, 1972. (1972) Zbl0327.53020MR0413153

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.