Sur les fibrés d'objets géométriques et leurs applications physiques

M. Ferraris; M. Francaviglia; C. Reina

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 38, Issue: 4, page 371-383
  • ISSN: 0246-0211

How to cite

top

Ferraris, M., Francaviglia, M., and Reina, C.. "Sur les fibrés d'objets géométriques et leurs applications physiques." Annales de l'I.H.P. Physique théorique 38.4 (1983): 371-383. <http://eudml.org/doc/76203>.

@article{Ferraris1983,
author = {Ferraris, M., Francaviglia, M., Reina, C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {bundles of geometric objects; fiber bundles; gauge theories of electromagnetism},
language = {fre},
number = {4},
pages = {371-383},
publisher = {Gauthier-Villars},
title = {Sur les fibrés d'objets géométriques et leurs applications physiques},
url = {http://eudml.org/doc/76203},
volume = {38},
year = {1983},
}

TY - JOUR
AU - Ferraris, M.
AU - Francaviglia, M.
AU - Reina, C.
TI - Sur les fibrés d'objets géométriques et leurs applications physiques
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 4
SP - 371
EP - 383
LA - fre
KW - bundles of geometric objects; fiber bundles; gauge theories of electromagnetism
UR - http://eudml.org/doc/76203
ER -

References

top
  1. [1] D. Krupka, A. Trautman, General Invariance of Lagrangian Structures: Bulletin Acad. Polon. Sci., Math. astr. phys., t. 22, 1974, p. 207-211. Zbl0278.49044MR345130
  2. [2] D. Krupka, A Setting for Generally Invariant Lagrangian Structures in Tensor Bundles; Bulletin Acad. Polon. Sci., Math. astr. phys., t. 22, 1974, p. 967-972. Zbl0305.58002MR410793
  3. [3] D. Krupka, A Geometric Theory of Ordinary First Order Variational Problems in Fibered Manifolds. I. Critical Sections. Journal of Math. Anal. and Appl., t. 49, 1975, p. 180-206. Zbl0312.58002MR362397
  4. [4] D. Krupka, A Theory of Generally Invariant Lagrangians for the Metric Fields. II. Internat. J. of Theor. Phys., t. 15, 1976, p. 949-959. Zbl0382.49036MR503475
  5. [5] D. Krupka, A Theory of Generally Invariant Lagrangians for the Metric Fields. I. Internat. J. of Theor. Phys., t. 17, 1978, p. 359-368. Zbl0407.58003MR527720
  6. [6] D. Krupka, Elementary Theory of Differential Invariants. Arch. Math.4, Scripta Fac. Sci. Nat. Ujep Brunensis, t. 14, 1978, p. 207-214. Zbl0428.58002MR512763
  7. [7] D. Krupka, Mathematical Theory of Invariant Interaction Lagrangians. Czech. J. Phys., t. B 29, 1979, p. 300-303. MR535140
  8. [8] D. Krupka, Reducibility Theorem for Differentiable Liftings in Fiber Bundles. Arch. Math.2, Scripta Fac Sci. Nat. Ujep Brunensis, t. 15, 1979, p. 93-106. Zbl0439.55009MR563142
  9. [9] D. Krupka, On the Lie Algebra of Higher Differential Groups. Bulletin Acad. Polon. Sci. Math., t. 27, 1979, p. 235-339. Zbl0431.58001MR552042
  10. [10] D. Krupka, Differential Invariants (preprint). University of Brno, Czechoslovakia, 1979. 
  11. [11] D. Krupka, Natural Lagrangian Structures (preprint). University of Brno, Czechoslovakia, 1979. MR961080
  12. [12] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach, New York, 1978. Zbl0418.35028MR517402
  13. [13] J. Kijowski, W.M. Tulczyjew, A Symplectic Framework for Field Theories. Lecture Notes in Physics, t. 107, 1979, Springer-Verlag, Berlin. Zbl0439.58002MR549772
  14. [14] M. Modugno, Formulation of Analytical Mechanics in General Relativity. Ann. Inst. Henri Poincaré, t. 21, 1974, p. 147-174. Zbl0305.70019MR373543
  15. [15] M. Modugno, On the Structure of Classical Kinematics. Absolute Dynamics. Riv. Mat. Univ. Parma, t. 5, 1979, p. 249-264. Zbl0439.70002MR584209
  16. [16] M. Modugno, R. Ragionieri, G. Stefani, Differential Pseudoconnections and Field theories. Ann. Inst. Henri Poincaré, t. 34, 1981, p. 465-496. Zbl0478.70015MR625175
  17. [17] M. Ferraris, M. Francaviglia, C. Reina, Variational Principles and Geometric Theories of Gravitation (en préparation) 1983. 
  18. [18] J. Haantjes, G. Laman. On the Definition of Geometric Objects. I. Indag. Math., t. 15, 1953, p. 208-215. Zbl0052.38302MR62507
  19. [19] J. Haantjes, G. Laman, On the Definition of Geometric Objects. II. Indag. Math., t. 15, 1953, p. 216-222. Zbl0052.38302MR62507
  20. [20] J.A. Schouten, J. Haantjes, On the Theory of Geometric Objects. Proc. London Math. Soc., t. 42, 1936, p. 356-376. Zbl0016.13501
  21. [21] C. Ehresmann, Les prolongements d'une variété différentiable. I, II, III, Comptes Rendus Acad. Sci. Paris, t. 233, 1951, p. 598-600, 777-779, 1081-1083. Zbl0043.17401
  22. [22] C. Ehresmann, Structures locales et structures infinitésimales. Comptes Rendus Acad. Sci. Paris, t. 234, 1952, p. 587-589. Zbl0046.40703MR46736
  23. [23] C. Ehresmann, Les prolongements d'une variété différentiable. IV, V. Comptes Rendus Acad. Sci. Paris, t. 234, 1952, p. 1028-1030, 1424-1425. Zbl0046.40801
  24. [24] C. Ehresmann, Extension du calcul des jets aux jets non holonomes. Comptes Rendus Acad. Sci. Paris, t. 239, 1954, p. 1762-1764. Zbl0057.15603MR66734
  25. [25] C. Ehresmann, Les prolongements d'un espace fibré différentiable. Comptes Rendus Acad. Sci. Paris, t. 240, 1955, p. 1755-1757. Zbl0064.17502MR71083
  26. [26] N.H. Kuiper, K. Yano, On Geometric Objects and Lie Groups ot Transformations. Indag. Math., t. 17, 1955, p. 411-420. Zbl0067.39802MR74048
  27. [27] S. Salvioli, On the Theory of Geometric Objects. J. Diff. Geom., t. 17, 1972, p. 257-278. Zbl0276.53013MR320922
  28. [28] A. Nijenhuis, Theory of Geometric Objects. Doctoral Thesis, Amsterdam, 1952. Zbl0049.22903
  29. [29] R.S. Palais, C.-L. Terng, Natural Bundles have Finite Order. Topology, 1977, p. 271- 277. Zbl0359.58004MR467787
  30. [30] M. Ferraris, M. Francaviglia, C. Reina, A Constructive Approach to Bundles of Geometric Objects on a Differentiable Manifold. J. Math. Phys., t. 24, 1983, p. 120- 124. Zbl0533.53013MR690377
  31. [31] M. Ferraris, J. Kijowski, Unified Geometric Theory of Electromagnetic and Gravitational Interactions. Journal of Gen. Rel. Grav., t. 14, 1982, p. 37-47. Zbl0481.53015MR650163
  32. [32] M. Flato, A. Lichnerowicz. Cohomologie des représentations définies par la dérivation de Lie et à valeurs dans les formes, de l'algèbre de Lie des champs de vecteurs d'une variété différentiable. Premiers espaces de cohomologie. Applications. Comptes Rendus Acad. Sci. Paris, t. 291 A, 1980, p. 331-335. Zbl0462.58011MR591764

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.