Sur les fibrés d'objets géométriques et leurs applications physiques
M. Ferraris; M. Francaviglia; C. Reina
Annales de l'I.H.P. Physique théorique (1983)
- Volume: 38, Issue: 4, page 371-383
- ISSN: 0246-0211
Access Full Article
topHow to cite
topFerraris, M., Francaviglia, M., and Reina, C.. "Sur les fibrés d'objets géométriques et leurs applications physiques." Annales de l'I.H.P. Physique théorique 38.4 (1983): 371-383. <http://eudml.org/doc/76203>.
@article{Ferraris1983,
author = {Ferraris, M., Francaviglia, M., Reina, C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {bundles of geometric objects; fiber bundles; gauge theories of electromagnetism},
language = {fre},
number = {4},
pages = {371-383},
publisher = {Gauthier-Villars},
title = {Sur les fibrés d'objets géométriques et leurs applications physiques},
url = {http://eudml.org/doc/76203},
volume = {38},
year = {1983},
}
TY - JOUR
AU - Ferraris, M.
AU - Francaviglia, M.
AU - Reina, C.
TI - Sur les fibrés d'objets géométriques et leurs applications physiques
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 4
SP - 371
EP - 383
LA - fre
KW - bundles of geometric objects; fiber bundles; gauge theories of electromagnetism
UR - http://eudml.org/doc/76203
ER -
References
top- [1] D. Krupka, A. Trautman, General Invariance of Lagrangian Structures: Bulletin Acad. Polon. Sci., Math. astr. phys., t. 22, 1974, p. 207-211. Zbl0278.49044MR345130
- [2] D. Krupka, A Setting for Generally Invariant Lagrangian Structures in Tensor Bundles; Bulletin Acad. Polon. Sci., Math. astr. phys., t. 22, 1974, p. 967-972. Zbl0305.58002MR410793
- [3] D. Krupka, A Geometric Theory of Ordinary First Order Variational Problems in Fibered Manifolds. I. Critical Sections. Journal of Math. Anal. and Appl., t. 49, 1975, p. 180-206. Zbl0312.58002MR362397
- [4] D. Krupka, A Theory of Generally Invariant Lagrangians for the Metric Fields. II. Internat. J. of Theor. Phys., t. 15, 1976, p. 949-959. Zbl0382.49036MR503475
- [5] D. Krupka, A Theory of Generally Invariant Lagrangians for the Metric Fields. I. Internat. J. of Theor. Phys., t. 17, 1978, p. 359-368. Zbl0407.58003MR527720
- [6] D. Krupka, Elementary Theory of Differential Invariants. Arch. Math.4, Scripta Fac. Sci. Nat. Ujep Brunensis, t. 14, 1978, p. 207-214. Zbl0428.58002MR512763
- [7] D. Krupka, Mathematical Theory of Invariant Interaction Lagrangians. Czech. J. Phys., t. B 29, 1979, p. 300-303. MR535140
- [8] D. Krupka, Reducibility Theorem for Differentiable Liftings in Fiber Bundles. Arch. Math.2, Scripta Fac Sci. Nat. Ujep Brunensis, t. 15, 1979, p. 93-106. Zbl0439.55009MR563142
- [9] D. Krupka, On the Lie Algebra of Higher Differential Groups. Bulletin Acad. Polon. Sci. Math., t. 27, 1979, p. 235-339. Zbl0431.58001MR552042
- [10] D. Krupka, Differential Invariants (preprint). University of Brno, Czechoslovakia, 1979.
- [11] D. Krupka, Natural Lagrangian Structures (preprint). University of Brno, Czechoslovakia, 1979. MR961080
- [12] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach, New York, 1978. Zbl0418.35028MR517402
- [13] J. Kijowski, W.M. Tulczyjew, A Symplectic Framework for Field Theories. Lecture Notes in Physics, t. 107, 1979, Springer-Verlag, Berlin. Zbl0439.58002MR549772
- [14] M. Modugno, Formulation of Analytical Mechanics in General Relativity. Ann. Inst. Henri Poincaré, t. 21, 1974, p. 147-174. Zbl0305.70019MR373543
- [15] M. Modugno, On the Structure of Classical Kinematics. Absolute Dynamics. Riv. Mat. Univ. Parma, t. 5, 1979, p. 249-264. Zbl0439.70002MR584209
- [16] M. Modugno, R. Ragionieri, G. Stefani, Differential Pseudoconnections and Field theories. Ann. Inst. Henri Poincaré, t. 34, 1981, p. 465-496. Zbl0478.70015MR625175
- [17] M. Ferraris, M. Francaviglia, C. Reina, Variational Principles and Geometric Theories of Gravitation (en préparation) 1983.
- [18] J. Haantjes, G. Laman. On the Definition of Geometric Objects. I. Indag. Math., t. 15, 1953, p. 208-215. Zbl0052.38302MR62507
- [19] J. Haantjes, G. Laman, On the Definition of Geometric Objects. II. Indag. Math., t. 15, 1953, p. 216-222. Zbl0052.38302MR62507
- [20] J.A. Schouten, J. Haantjes, On the Theory of Geometric Objects. Proc. London Math. Soc., t. 42, 1936, p. 356-376. Zbl0016.13501
- [21] C. Ehresmann, Les prolongements d'une variété différentiable. I, II, III, Comptes Rendus Acad. Sci. Paris, t. 233, 1951, p. 598-600, 777-779, 1081-1083. Zbl0043.17401
- [22] C. Ehresmann, Structures locales et structures infinitésimales. Comptes Rendus Acad. Sci. Paris, t. 234, 1952, p. 587-589. Zbl0046.40703MR46736
- [23] C. Ehresmann, Les prolongements d'une variété différentiable. IV, V. Comptes Rendus Acad. Sci. Paris, t. 234, 1952, p. 1028-1030, 1424-1425. Zbl0046.40801
- [24] C. Ehresmann, Extension du calcul des jets aux jets non holonomes. Comptes Rendus Acad. Sci. Paris, t. 239, 1954, p. 1762-1764. Zbl0057.15603MR66734
- [25] C. Ehresmann, Les prolongements d'un espace fibré différentiable. Comptes Rendus Acad. Sci. Paris, t. 240, 1955, p. 1755-1757. Zbl0064.17502MR71083
- [26] N.H. Kuiper, K. Yano, On Geometric Objects and Lie Groups ot Transformations. Indag. Math., t. 17, 1955, p. 411-420. Zbl0067.39802MR74048
- [27] S. Salvioli, On the Theory of Geometric Objects. J. Diff. Geom., t. 17, 1972, p. 257-278. Zbl0276.53013MR320922
- [28] A. Nijenhuis, Theory of Geometric Objects. Doctoral Thesis, Amsterdam, 1952. Zbl0049.22903
- [29] R.S. Palais, C.-L. Terng, Natural Bundles have Finite Order. Topology, 1977, p. 271- 277. Zbl0359.58004MR467787
- [30] M. Ferraris, M. Francaviglia, C. Reina, A Constructive Approach to Bundles of Geometric Objects on a Differentiable Manifold. J. Math. Phys., t. 24, 1983, p. 120- 124. Zbl0533.53013MR690377
- [31] M. Ferraris, J. Kijowski, Unified Geometric Theory of Electromagnetic and Gravitational Interactions. Journal of Gen. Rel. Grav., t. 14, 1982, p. 37-47. Zbl0481.53015MR650163
- [32] M. Flato, A. Lichnerowicz. Cohomologie des représentations définies par la dérivation de Lie et à valeurs dans les formes, de l'algèbre de Lie des champs de vecteurs d'une variété différentiable. Premiers espaces de cohomologie. Applications. Comptes Rendus Acad. Sci. Paris, t. 291 A, 1980, p. 331-335. Zbl0462.58011MR591764
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.