Asymptotic properties of solutions of the differential equation { A n - 1 - 1 ( t ) [ A 1 - 1 ( t ) y ' ] ' } ' = A n ( t ) y + F ( t )

Ivo Res

Archivum Mathematicum (1979)

  • Volume: 015, Issue: 2, page 119-128
  • ISSN: 0044-8753

How to cite

top

Res, Ivo. "Asymptotic properties of solutions of the differential equation $\lbrace A^{-1}_{n-1}(t)\dots [A^{-1}_1(t)y^{\prime }]^{\prime }\dots \rbrace ^{\prime }=A_n(t)y+F(t)$." Archivum Mathematicum 015.2 (1979): 119-128. <http://eudml.org/doc/17998>.

@article{Res1979,
author = {Res, Ivo},
journal = {Archivum Mathematicum},
keywords = {nth order nonhomogeneous linear differential equation; Peano-Baker method},
language = {eng},
number = {2},
pages = {119-128},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic properties of solutions of the differential equation $\lbrace A^\{-1\}_\{n-1\}(t)\dots [A^\{-1\}_1(t)y^\{\prime \}]^\{\prime \}\dots \rbrace ^\{\prime \}=A_n(t)y+F(t)$},
url = {http://eudml.org/doc/17998},
volume = {015},
year = {1979},
}

TY - JOUR
AU - Res, Ivo
TI - Asymptotic properties of solutions of the differential equation $\lbrace A^{-1}_{n-1}(t)\dots [A^{-1}_1(t)y^{\prime }]^{\prime }\dots \rbrace ^{\prime }=A_n(t)y+F(t)$
JO - Archivum Mathematicum
PY - 1979
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 015
IS - 2
SP - 119
EP - 128
LA - eng
KW - nth order nonhomogeneous linear differential equation; Peano-Baker method
UR - http://eudml.org/doc/17998
ER -

References

top
  1. M. Ráb, Les dèvelopements asymptotiques des solutions de l'equation, Arch. Math. Brno, T2 (1966). (1966) Zbl0238.34016MR0199488
  2. M. Ráb, Über lineare Perturbationen eines Systems von linearen Differentialgleichungen, Czech. Mat. Journ. Praha, T 8 (83) (1953). (1953) Zbl0082.29805MR0102633
  3. M. Ráb, Asymptotic expansion of solutions of the equation ( p ( x ) y ' ) ' - q ( x ) y = 0 with complex-valued coefficients, Arch. Math. Brno, Zbl0271.34066MR0315231
  4. I. Res, Asymptotische Eìgenschaften einer perturbierten interierten Differentialgleichung, Arch. Math. Brno, T X (1974), 149-158. (1974) Zbl0344.34009MR0477314
  5. I. Res, Asymptotické vlastnosti řešení diferenciálni rovnice A n - 1 - 1 ( x ) ... [ A 1 - 1 ( x ) y ' ] ' ... ' = A n ( x ) y , Acta Universitatis Agriculturae Brno, Ser. C. 43, (1974, 4) 365--372. (1974) 
  6. U. Richard, Serie asintotische per una classe di equationi differenziali de 2° ordine, Rendiconti del Sem. Math. Torino, Vol. 23 (1963-1964). (1963) MR0173810

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.