Asymptotic expansions of solutions of the equation ( p ( x ) y ' ) ' - q ( x ) y = 0 with complex-valued coefficients

Miloš Ráb

Archivum Mathematicum (1972)

  • Volume: 008, Issue: 1, page 1-15
  • ISSN: 0044-8753

How to cite

top

Ráb, Miloš. "Asymptotic expansions of solutions of the equation $(p(x)y^{\prime })^{\prime }-q(x)y=0$ with complex-valued coefficients." Archivum Mathematicum 008.1 (1972): 1-15. <http://eudml.org/doc/15913>.

@article{Ráb1972,
author = {Ráb, Miloš},
journal = {Archivum Mathematicum},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic expansions of solutions of the equation $(p(x)y^\{\prime \})^\{\prime \}-q(x)y=0$ with complex-valued coefficients},
url = {http://eudml.org/doc/15913},
volume = {008},
year = {1972},
}

TY - JOUR
AU - Ráb, Miloš
TI - Asymptotic expansions of solutions of the equation $(p(x)y^{\prime })^{\prime }-q(x)y=0$ with complex-valued coefficients
JO - Archivum Mathematicum
PY - 1972
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 008
IS - 1
SP - 1
EP - 15
LA - eng
UR - http://eudml.org/doc/15913
ER -

References

top
  1. Richard U., Serie asintotiche peг una classe di equazioni diffeгenziali lineari non oscillanti del 2° ordine, Univ. e Politec. Torino Rend. Sem. Mat. 23 (1963/64), 171-217. (1963) MR0173810
  2. Haгtman P., Ordinary diffeгential equations, John Wiley - Sons, Inc., New Yoгk-London-Sydney 1964. (1964) 

Citations in EuDML Documents

top
  1. Po Fang Hsieh, On asymptotic integrations of x 2 y ' ' - P ( x ) y = 0
  2. Miloš Ráb, Asymptotic formulas for solutions of the equation [ p ( t ) y ' ] ' = q ( t ) y + r ( t )
  3. Hans-Görg Roos, Die Konstruktion asymptotischer Fundamentalsysteme für lineare Differentialgleichungen mit Wendepunkten
  4. Ivo Res, Asymptotic properties of solutions of the differential equation { A n - 1 - 1 ( t ) [ A 1 - 1 ( t ) y ' ] ' } ' = A n ( t ) y + F ( t )
  5. L. Katzarkov, M. Ramachandran, On the universal coverings of algebraic surfaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.