The investigation of special maximal collections of the group G = G ( 2 ) × G ( k ) with k even

J.-C. Panayiotopoulos

Archivum Mathematicum (1980)

  • Volume: 016, Issue: 1, page 45-50
  • ISSN: 0044-8753

How to cite


Panayiotopoulos, J.-C.. "Recherche des collections speciales maximales du groupe $G=G(2)\times G(k)$, $k$ pair." Archivum Mathematicum 016.1 (1980): 45-50. <>.

author = {Panayiotopoulos, J.-C.},
journal = {Archivum Mathematicum},
keywords = {orthogonal permutations},
language = {fre},
number = {1},
pages = {45-50},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Recherche des collections speciales maximales du groupe $G=G(2)\times G(k)$, $k$ pair},
url = {},
volume = {016},
year = {1980},

AU - Panayiotopoulos, J.-C.
TI - Recherche des collections speciales maximales du groupe $G=G(2)\times G(k)$, $k$ pair
JO - Archivum Mathematicum
PY - 1980
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 016
IS - 1
SP - 45
EP - 50
LA - fre
KW - orthogonal permutations
UR -
ER -


  1. R. C. Bose I. M. Chakravarti D. E. Knuth, On Methods of Constructing Sets of Mutually Orthogonal Latin Squares Using a Computer, Technometrics, 2, 1960, 507-516 (1960) Zbl0096.12306MR0125802
  2. H. B. Mann, The construction of orthogonal latin squares, Ann. Math. Stat., 13, 1942, 418-423 (1942) Zbl0060.02706MR0007736
  3. J.-C. Panayiotopoulos, Orthogonal additions of Abelian groups, Aequat. Mathematicae. To appear 
  4. J. Dénes A. D. Keedwell, Latin squares and their applications, London 1974 Zbl0283.05014MR0351850
  5. J.-C. Panayiotopoulos, About latin squares of standard form and of even order, PH. D. dissertation, University of Athens 1976 
  6. C. Berge, Theorie des Graphes et ses applications, Paris 1958 Zbl0214.50804MR0155312
  7. V. DiGiorgio, Application de l'Algèbre de Boole a l'étude des Graphes, Math. et Sciences Humaines, 36, 1971, 33-58 (1971) MR0335366
  8. D. M. Johnson A. L. Dulmage N. S. Mendelsohn, Orthomorphisms of groups and orthogonal Latin squares, Canad. J. Math. 13, 1961, 356-372 (1961) Zbl0097.25102MR0124229

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.