Iteration groups generated by C n functions

George Blanton; John A. Baker

Archivum Mathematicum (1982)

  • Volume: 018, Issue: 3, page 121-127
  • ISSN: 0044-8753

How to cite


Blanton, George, and Baker, John A.. "Iteration groups generated by $C^n$ functions." Archivum Mathematicum 018.3 (1982): 121-127. <>.

author = {Blanton, George, Baker, John A.},
journal = {Archivum Mathematicum},
keywords = {iteration groups generated by bijection; Cn-diffeomorphisms},
language = {eng},
number = {3},
pages = {121-127},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Iteration groups generated by $C^n$ functions},
url = {},
volume = {018},
year = {1982},

AU - Blanton, George
AU - Baker, John A.
TI - Iteration groups generated by $C^n$ functions
JO - Archivum Mathematicum
PY - 1982
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 018
IS - 3
SP - 121
EP - 127
LA - eng
KW - iteration groups generated by bijection; Cn-diffeomorphisms
UR -
ER -


  1. Aczél J., Funktionskomposition, Iterationsgruppen und Gewebe, Aгchiv der Mathematik, 17 (1966), 469-475. (1966) Zbl0144.01402MR0203624
  2. De Bгuijn N. G., Functions whose differences belong to a given class, Nieuw. Archief voor Wiskunde, 23 (1951), 194-218. (1951) MR0043870
  3. Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. (1963) Zbl0137.02001MR0171864
  4. Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, New York, 1965. (1965) Zbl0137.03202MR0367121
  5. Ostrowski A., Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jahresber. Deut. Math.-Verein 38 (1929), 54-62. (1929) Zbl55.0800.01

Citations in EuDML Documents

  1. František Neuman, On iteration groups of certain functions
  2. Dorota Krassowska, Marek Zdun, On principal iteration semigroups in the case of multiplier zero
  3. Janusz Brzdęk, On some iteration semigroups
  4. Staněk, Svatoslav, On a transformation of solutions of the differential equation y ' = Q ( t ) y with a complex coefficient Q of a real variable
  5. Staněk, Svatoslav, On the intersection of groups of increasing dispersions in two second order oscillatory differential equations
  6. Staněk, Svatoslav, Common increasing dispersions of certain linear second order differential equations
  7. František Neuman, Stationary groups of linear differential equations

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.