A Leighton-Borůvka formula for Morse conjugate points
Archivum Mathematicum (1985)
- Volume: 021, Issue: 4, page 189-193
- ISSN: 0044-8753
Access Full Article
topHow to cite
topGuggenheimer, Heinrich W.. "A Leighton-Borůvka formula for Morse conjugate points." Archivum Mathematicum 021.4 (1985): 189-193. <http://eudml.org/doc/18169>.
@article{Guggenheimer1985,
author = {Guggenheimer, Heinrich W.},
journal = {Archivum Mathematicum},
keywords = {second order linear differential equation; conjugate point function; Leighton-Boruvka formula},
language = {eng},
number = {4},
pages = {189-193},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A Leighton-Borůvka formula for Morse conjugate points},
url = {http://eudml.org/doc/18169},
volume = {021},
year = {1985},
}
TY - JOUR
AU - Guggenheimer, Heinrich W.
TI - A Leighton-Borůvka formula for Morse conjugate points
JO - Archivum Mathematicum
PY - 1985
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 021
IS - 4
SP - 189
EP - 193
LA - eng
KW - second order linear differential equation; conjugate point function; Leighton-Boruvka formula
UR - http://eudml.org/doc/18169
ER -
References
top- O. Borůvka, Lineare Differentialtransformationen 2. Ordnung, VEB Deutsch. Verlag Wiss. Berlin 1967. (1967) MR0236448
- R. Freedman, Oscillation theory of systems of ordinary differential equations, Thesis, PINY 1979. (1979)
- H. Guggenheimer, On focal points and limit behavior of solutions of differential equations, Arch. Math. (Brno) 14 (1978) 139-144. (1978) MR0508430
- 14] H. Guggenheimer, Geometric theory of differential equations, III. Second Order Equations of the Reals, Arch. rat. Mech. Anal. 41 (1971) 219-240. (1971) MR0357939
- H. Guggenheimer, Applicable Geometry, Krieger, Huntington NY 1977. (1977) Zbl0396.52001MR0442821
- W. Leighton, Principal quadratic functionals, TAMS 67 (1949) 253-274. (1949) Zbl0041.22404MR0034535
- A. C. Peterson, On the monotone nature of boundary value functions for n-th order differential equations, Canad. Math. Bull. 15 (1972) 253-258. (1972) Zbl0236.34019MR0310324
- W. T. Reid, Ordinary Differential Equations, Wiley NY 1971. (1971) Zbl0212.10901MR0273082
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.