Asymptotic behaviour of the equation z ˙ = G ( t , z ) [ h ( z ) + g ( t , z ) ]

Josef Kalas

Archivum Mathematicum (1989)

  • Volume: 025, Issue: 4, page 195-206
  • ISSN: 0044-8753

How to cite

top

Kalas, Josef. "Asymptotic behaviour of the equation $\dot{z}=G(t,z)[h(z)+g(t,z)]$." Archivum Mathematicum 025.4 (1989): 195-206. <http://eudml.org/doc/18274>.

@article{Kalas1989,
author = {Kalas, Josef},
journal = {Archivum Mathematicum},
keywords = {modified Lyapunov function method; Riccati equation},
language = {eng},
number = {4},
pages = {195-206},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic behaviour of the equation $\dot\{z\}=G(t,z)[h(z)+g(t,z)]$},
url = {http://eudml.org/doc/18274},
volume = {025},
year = {1989},
}

TY - JOUR
AU - Kalas, Josef
TI - Asymptotic behaviour of the equation $\dot{z}=G(t,z)[h(z)+g(t,z)]$
JO - Archivum Mathematicum
PY - 1989
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 025
IS - 4
SP - 195
EP - 206
LA - eng
KW - modified Lyapunov function method; Riccati equation
UR - http://eudml.org/doc/18274
ER -

References

top
  1. J. Kalas, On a “Liapunov-like” function for an equation z ˙ = f ( t , z ) with a complex-valued function f, Aгch. Math. (Brno) 18 (1982), 65-76. (1982) MR0683347
  2. J. Kalas, Asymptotic nature of solutions of the equation ż = f(t,z) with a complex-valued function f, Arch. Math. (Brno) 20 (1984), 83-94. (1984) MR0784859
  3. J. Kalas, Some results on the asymptotic behaviour of the equation ż = f(t,z) with a complex-valued function f, Arch. Math. (Brno) 21 (1985), 195-199. (1985) MR0833131
  4. J. Kalas, Contributions to the asymptotic behaviour of the equation ż = f(t, z) with a complex-valued function f, to appear. MR1037349
  5. C. Kulig, On a system of differential equations, Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat. Zeszyt 9, 77 (1963), 37-48. (1963) Zbl0267.34029MR0204763
  6. M. Ráb, Equation Z ' = A ( t ) - Z 2 , coefficient of which has a small modulus, Czech. Math. J. 21 (96) 1971, 311-317. (1971) MR0287096
  7. M. Ráb, Geometrical ąpproach to the study of the Riccati differential equation with complex-valued coefficients, J. Diff. Equations 25 (1977), 108-114. (1977) MR0492454
  8. Z. Tesařová, The Riccati differential equation with complex-valued coefficients and application to the equation x ' ' + P ( t ) x ' + Q ( t ) x = 0 , Aгch. Math. (Brno) 18 (1982), 133-143. (1982) Zbl0514.34042MR0682101

NotesEmbed ?

top

You must be logged in to post comments.