Asymptotic nature of solutions of the equation z ˙ = f ( t , z ) with a complex valued function f

Josef Kalas

Archivum Mathematicum (1984)

  • Volume: 020, Issue: 2, page 83-94
  • ISSN: 0044-8753

How to cite

top

Kalas, Josef. "Asymptotic nature of solutions of the equation $\dot{z}=f(t,z)$ with a complex valued function $f$." Archivum Mathematicum 020.2 (1984): 83-94. <http://eudml.org/doc/18133>.

@article{Kalas1984,
author = {Kalas, Josef},
journal = {Archivum Mathematicum},
keywords = {numerical example},
language = {eng},
number = {2},
pages = {83-94},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic nature of solutions of the equation $\dot\{z\}=f(t,z)$ with a complex valued function $f$},
url = {http://eudml.org/doc/18133},
volume = {020},
year = {1984},
}

TY - JOUR
AU - Kalas, Josef
TI - Asymptotic nature of solutions of the equation $\dot{z}=f(t,z)$ with a complex valued function $f$
JO - Archivum Mathematicum
PY - 1984
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 020
IS - 2
SP - 83
EP - 94
LA - eng
KW - numerical example
UR - http://eudml.org/doc/18133
ER -

References

top
  1. Butlewski Z., O pewnym ruchu plaskim, Zeszyty Naukowe Polit. Poznanskiej, 2 (1957), 93-122. (1957) 
  2. Butlewski Z., Sur un mouvement plan, Ann. Polon. Math. 13 (1963), 139-161. (1963) Zbl0118.30503MR0153936
  3. Tesařová Z., The Riccati differential equation with complex-valued coefficients and application to the equation x " + P ( t ) x ' + Q ( t ) x = 0 , Arch. Math. (Brno) 18 (1982), 133-143. (1982) MR0682101
  4. Kalas J., Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f, Colloquia Mathematica Societatis János Bolyai, 30. QualitativeTheoгy of Differential Equations, Szeged (Hungary), 1979, pp. 431 -462. (1979) MR0680606
  5. Kalas J., On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f, Arch. Math. (Brao) 17 (1981), 11 -22. (1981) Zbl0475.34028MR0672484
  6. Kalas J., On certain asymptotic properties of the solutions of the equation z ˙ = f ( t , z ) with a complex-valued function f, Czech. Math. J., 33 (1983), 390-407. (1983) MR0718923
  7. Kalas J., Asymptotic properties of the solutions of the equation z ˙ = f ( t , z ) with a complex-valued functionf, Arch. Math. (Brno) 17 (1981), 113-123. (1981) MR0672315
  8. Kalas J., Asymptotic behaviour of equations z ˙ = q ( t , z ) - p ( t ) z 2 and x ¨ = x ϕ ( t , x ˙ x - 1 ) , Arch. Math. (Brno) 17 (1981), 191-206. (1981) MR0672659
  9. Kalas J., On a „Liapunov-like" function for an equation z ˙ = f ( t , z ) with a complex-valued function f, Arch. Math. (Brno) 18 (1982), 65-76. (1982) MR0683347
  10. Kulig C., On a system of differential equations, Zeszyty Naukowe Univ. Jagiellońskiego, Prace Mat., 77 (1963), 37-48. (1963) Zbl0267.34029MR0204763
  11. Ráb M., The Riccati differential equation with complex-valued coefficients, Czech. Math. J. 20 (1970), 491-503. (1970) MR0268452
  12. Ráb M., Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients, J. Diff. Equations 25 (1977), 108-114. (1977) MR0492454

NotesEmbed ?

top

You must be logged in to post comments.